Defensive secretions in millipede species of the order Julida (Diplopoda)

Grzegorz KANIA1), Radosław KOWALSKI2) & Rafał PIETRAS3)

1) Department of Biology and Parasitology, Radziwiłłowska 11, Medical University, PL–20-080 Lublin, Poland; e-mail: grzegorzkania@umlub.pl
2) Department of Analysis and Evaluation of Food Quality, Skromna 8, University of Life Sciences, PL–20-704 Lublin, Poland
3) Department of Medicinal Chemistry, Jaczewskiego 4, Medical University, PL–20-090 Lublin, Poland

Received 3 December 2014; accepted 25 February 2015
Published 12 April 2016

Abstract. The defensive compounds in the secretions of four species of millipede of the order Julida, Cylindroiulus caeruleocinctus (Wood, 1864), C. latestriatus (Curtis, 1845), Choneiulus palmatus (Nemec, 1895) and Ommatoiulus sabulosus (Linnaeus, 1758), were characterized using GC/MS analyses. The secretions contain mixtures of nine compounds of benzoquinones. A characteristic mixture of benzoquinones in the defensive secretions of the order Julida consists of 2-methyl-1,4-benzoquinone, 2-methoxy-3-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone and 2,3-dimethoxy-5-methyl-1,4-benzoquinone, together with trace amounts of 1,4-benzoquinone and hydroquinone.

Key words. Defensive secretion, benzoquinones, GC/MS analyses, Millipedes, Diplopoda, Julida.

INTRODUCTION

The objective of this study was the identification of chemicals secreted by the following species of millipedes of the order Julida: Cylindroiulus caeruleocinctus (Wood, 1864), C. latestriatus (Curtis, 1845), Choneiulus palmatus (Nemec, 1895) and Ommatoiulus sabulosus (Linnaeus, 1758). Despite the fact that the chemical secretions of the two common species, O. sabulosus and C. caeruleocinctus, have been previously analyzed by Huth (2000), we included both these species in the study because of their tendency to achieve outbreaks levels in urban areas.

MATERIALS AND METHODS

The millipedes Cylindroiulus caeruleocinctus and Ommatoiulus sabulosus were collected at Kraków and Lublin, Poland, in fallow areas, gardens and from walls of residential buildings and in the case of Cylindroiulus latestriatus and Choneiulus palmatus in greenhouses in the Botanical Garden of the University Maria Curte-Sklodowska at Lublin, Poland.
Chemical Extraction

For the collection of defensive secretions, ten specimens of each species of millipede were put into a glass vial (1.5 ml), to which 200 μl of dichloromethane (DCM) was then added after which the vial was sealed and then shaken for two minutes on a shaker (Vortex type). The extract was collected by decantation followed by a gas chromatography-mass spectrometry (GC-MS) analysis.

Chemical analyses and Identification

GC/MS: Gas chromatography GC 450 (Varian, USA) with mass spectrometry detector MS 320 (Varian, USA) equipped with a CP-810 autosampler and a 30 m × 0.25 mm VF-5 ms column (Varian, USA), film thickness 0.25 μm, carrier gas He 0.5 ml/min., injector and detector temperature were used, respectively, at 250 °C and 270 °C; split ratio 1:40; inject volume 2 μl. A temperature gradient was applied (40 °C for 3 minutes, then incremented by 6 °C /min to 270°C, kept at 270 °C for 0.67 minute, then incremented by 20 °C /min to 290 °C). ionization energy 70 eV; mass range: 45–400 Da; scan time 0.80 s.

The qualitative analysis was carried out on the basis of MS spectra, which were compared with the spectra in the NIST library, and with data available in the literature on the compounds previously identified in the defensive secretions of millipedes (Arab et al. 2003, Deml & Huth 2000, Wu et al. 2007, Vujisić et al. 2011).

RESULTS

A total of nine benzoquinone derivatives were identified (Table 1) in the defensive secretions of the four species of the order Julida, viz. *C. caeruleocinctus*, *C. latestriatus*, *Ch. palmatus* and *O. sabulosus*. The chemical structures of these compounds are closely related. The two major constituents of the secretion are: 2-methyl-1,4-benzoquinone and 2-methoxy-3-methyl-1,4-benzoquinone. In the secretion produced by *O. sabulosus* the major constituent (34.28%) is 2-methyl-1,4-benzoquinone. The relative abundance of the major compound, 2-methoxy-3-methyl-1,4-benzoquinone, was significantly higher in *C. caeruleocinctus*, *C. palmatus* and *O. sabulosus* than in *C. latestriatus* (44.47, 39.33, 53.79 vs. 0.31%). Furthermore, the relative content of 2-methyl-3,4-methylenedioxyphenol in the defensive exudates of *C. latestriatus* was significantly higher than in that of *C. caeruleocinctus*, *C. palmatus* and *O. sabulosus* (50.16 vs 9.69, 6.25, 1.52%). The other benzoquinones that are minor components in the defensive secretion of Julida are: 2,3-dimethoxy-1,4-benzoquinone and 2,3-dimethoxy-5-methyl-1,4-benzoquinone. Interestingly, we identified higher quantities of some minor compounds e.g. 2,3-dimethoxy-5-methyl-1,4-benzoquinone (comprising a total of 13.72% of chromatogram peak-area in the case of *C. caeruleocinctus*). Trace amounts of 1,4-benzoquinone and hydroquinone were also recorded.

DISCUSSION

The data reveal that the defensive chemicals produced by the millipede orders Spirobolida, Spirostreptida and Julida, first described as “quinone millipedes” by Eisner et al. (1978), are chemically similar. The most common compounds in the defensive secretions of the four julid millipede species studied are mainly 2-methyl-1,4-benzoquinone and 2-methoxy-3-methyl-1,4- benzoquinone, which is in agreement with previous data on Julida (Huth 2000, Vujisić et al. 2011, 2014, Bodner & Raspotnig 2012, Sekulić et al. 2014), Spirostreptida (Williams & Singh 1997, Deml & Huth 2000) and Spirobolida (Kuwahara et al. 2002, Arab et al. 2003, Wu et al. 2007). The major compound in the defensive secretion of *C. caeruleocinctus*, *C. palmatus* and *O. sabulosus* is 2-methoxy-3-methyl-1,4-benzoquinone. The compound 2-methyl-3,4-methylenedioxyphenol is recorded in the defensive secretion of Spirobolida (Wu et al. 2007) and julid millipede species (Vujisić et al. 2011, Sekulić et al. 2014) and confirmed by our analyses. The minor components 2,3-dimethoxy-1,4-benzoquinone and 2,3-dimethoxy-5-methyl-1,4-benzoquinone are recorded in the defensive secretion of *Acladocricus setigerus* (Silvestri, 1897) (Wu et al. 2007), the julid millipede species *Allajulus dicentrus* (Latzel, 1884) (Bodner & Raspotnig 2012) and *Unciger*
transsilvanicus (Verhoeff, 1899) (Sekulić et al. 2014), which is in accordance with the results of the present study.

We detected 1,4-benzoquinone and hydroquinone, which confirms results of previous studies on julid species (Huth 2000, Vujisić et al. 2011, Bodner & Raspotnig 2012, Sekulić et al. 2014). We identified trace amounts of 1,4-benzoquinone in the defensive fluids of the stripped millipede O. sabulosus, which confirms previous data recorded for the stripped millipede (Huth 2000) and Megaphyllum bosniense (Verhoeff, 1897) (Vujisić et al. 2011).

The benzoquinones in the defensive secretions of julid millipedes have antibacterial, antifungal and antihelminthic qualities (Williams & Singh 1997). Moreover, benzoquinones secreted by tropical species cause staining and burning of the skin and, in the case of eyes, causes lacrimation, keratitis and ulceration of the cornea (Haddad et al. 2000, Buden et al. 2004, De Capitani et al. 2011). Therefore, the benzoquinone secretions of Cylindroiulus latestriatus, Choneiulus palmatus, C. caeruleocinctus and O. sabulosus, which occur in urban areas, may be dangerous for humans.

REFERENCES

Table 1. Chemical compounds in the defensive secretions produced by four julid millipede species. Abbreviations: RI – retention index obtained from GC/MS data, nd – not detected

<table>
<thead>
<tr>
<th>no</th>
<th>compound</th>
<th>RI</th>
<th>CC</th>
<th>CL</th>
<th>CP</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,4-benzoquinone</td>
<td>9.146</td>
<td>nd</td>
<td>nd</td>
<td>0.08</td>
<td>0.65</td>
</tr>
<tr>
<td>2</td>
<td>2-methyl-1,4-benzoquinone</td>
<td>11.870</td>
<td>12.16</td>
<td>29.66</td>
<td>28.99</td>
<td>34.28</td>
</tr>
<tr>
<td>3</td>
<td>2-methoxy-3-methyl-1,4-benzoquinone</td>
<td>16.208</td>
<td>44.47</td>
<td>0.31</td>
<td>39.33</td>
<td>53.79</td>
</tr>
<tr>
<td>4</td>
<td>hydroquinone</td>
<td>18.244</td>
<td>0.72</td>
<td>0.04</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>5</td>
<td>2-methoxy-5-methyl-2,5-cyclohexadiene-1,4-dione</td>
<td>20.074</td>
<td>nd</td>
<td>nd</td>
<td>0.27</td>
<td>0.12</td>
</tr>
<tr>
<td>6</td>
<td>2-methyl-3,4-(methyleneoxy)phenol</td>
<td>21.236</td>
<td>9.69</td>
<td>50.16</td>
<td>6.25</td>
<td>1.52</td>
</tr>
<tr>
<td>7</td>
<td>2-methyl-1,4-benzoniodiol</td>
<td>20.100</td>
<td>2.48</td>
<td>4.45</td>
<td>4.93</td>
<td>3.35</td>
</tr>
<tr>
<td>8</td>
<td>2,3-dimethoxy-5-methyl-1,4-benzoquinone</td>
<td>21.760</td>
<td>13.72</td>
<td>2.51</td>
<td>3.49</td>
<td>0.43</td>
</tr>
<tr>
<td>9</td>
<td>2,3-dimethoxy-1,4-benzoquinone</td>
<td>21.893</td>
<td>1.43</td>
<td>0.30</td>
<td>1.99</td>
<td>1.75</td>
</tr>
</tbody>
</table>

