ACTA SOCIETATIS ZOOLOGICAE BOHEMICAЕ

1993 297

ISSN 0862-5247

47678

Editor: Karel Hůrka
Executive editor: David Král
Editorial board: Jan Buchar, Ivo Hodek, Jaroslav Hrbáček, František Moravec, Vladimír J.A. Novák, Ota Oliva, Josef Rusek, František Sládeček, Jiří Vávra, Zdeněk Veselovský, Jan Zima

Published and distributed by Czech Zoological Society. Orders should be sent to the Czech Zoological Society, Vinohrady 7, CZ-126 00 Praha 2, Czech Republic. Orders from other countries than Czech Republic should be placed with Arion, Pegas Press Distributor, Ve Smrčkách 30, CZ-111 27 Praha 1, Czech Republic.

Annual subscription (Volume 57, 1993, 4 issues, 360 pp.):

Institutional subscription: Europe: USD 80.-
Other countries: USD 90.-

Private subscription: Europe: USD 40.-
Other countries: USD 50.-

Czech Republic: Kč 120.-

© Czech Zoological Society, Praha, 1993

1) A continuation of the journal Věstník československé Společnosti zoologické (Věst. Čs. Spolec. Zool.)
CONTENTS

Articles

ČIHAČOVÁ J., EXNEROVÁ A., SÁDLO J. & FRYNTA D.: Many-sided evaluation of the extensive synchronous sampling of small mammals (Insectivora; Rodentia) in lowland forest ... 1
KRÁL D. & MALÝ V.: New records of Scarabaeoidea (Coleoptera) from Bulgaria 17
NAŠINCOVÁ V., MORAVEC F. & SCHOLZ T.: Trematodes of the common cormorant (Phalacrocorax carbo) in Czech Republic ... 31
RŮZIČKA J.: Revision of the subgenus Merodiscus of the genus Ptyonoplacea (Coleoptera, Leiodidae, Cholevinae) ... 47
RŮZIČKOVÁ J.: Photoperiodic response of Chironomus plumosus (Diptera: Chironomidae) under laboratory conditions ... 53
STARÝ J.: New and interesting Oribatid species of the family Euphthiracaridae (Acari: Oribatida) from Cuba ... 57
ŠVÁTORA M. & SÁNCHEZ SANJOSÉ B.: Growth, biomass, production and survival of perch population (Perca fluviatilis, Percidae, Osteichthyes) in small experimental pond - Central Bohemia, Czech Republic .. 69

Short notes

DAVIDOVÁ-VILÍMOVÁ J.: Occurrence of Aethusa flavicornis (Heteroptera: Cydnidae) in former Czechoslovakia ... 77
Many-sided evaluation of the extensive synchronous sampling of small mammals (Insectivora, Rodentia) in lowland forest

Jovana ČIHAČKOVA \(^1\), Alice ŠÍMEKOVÁ \(^1\),
Jiří ŠÁDLO \(^2\) & Daniel FRYNTA \(^3\)

\(^1\) Department of Zoology, Charles University, Vídeňská 7, CZ-128 44 Prague 2, Czech Republic
\(^2\) Institute of Botany, Czech Academy of Sciences, CZ-252 43 Petřínské údolí - zámek, Czech Republic

Received October 27, 1992; accepted February 2, 1993
Published June 25, 1993

Ecology, spatial distribution, reproduction, Apodemus, Clethrionomys

Abstract. The line transect consisting of 1545 snap-traps was laid in ecotones of lowland forest situated on the confluence of Vltava and Laba rivers in Central Bohemia. Traps were exposed for 3 nights in early April 1992. The total catch consisted of 527 animals belonging to seven species. Basic parameters of the synchrony and reproduction of individual species were described. Clethrionomys glareolus (\(D=59\%\)), Apodemus flavicollis (\(D=25\%\)) and Apodemus sylvaticus (\(D=9\%\)) were dominant species, their relative abundances (number of animals per trap in the first day of trapping) were 10.3, 5.8 and 3.2, respectively. Average litter size was 5.07 in A. flavicollis (n=29). We attempted to use data on the distribution of animals along the transect for the analysis of both interspecific and intraspecific relationships. Abundances of individual species are not correlated to each other. In A. flavicollis male-female pairs captured in the same or neighbouring trap were more frequent than unilateral pairs.

INTRODUCTION

Snap-traps laid in lines or quadrats were frequently used in ecological studies in small rodents and insectivores. Millions of traps were laid, thousands of animals were killed and numerous studies based on these methods were published. Majority of these data sets were used for the precise density estimation and description of annual and population cycles. It is evident that such data may tell us also important information about spatial organisation of small mammal communities and populations, which can illustrate features of social organisation and interspecific relationships. The only condition is sufficient, i.e., extremely large, size of synchronous sample. Unfortunately, having in mind apparent fluctuations in synchrony, majority of authors underestimated synchronous point of view. We attempted to use long continuous line transect of snap-traps in order to collect synchronous data in the field. The trap-line was chosen because of more simple evaluation of one-dimensional data. Timing of the research was precisely planned in order to collect data after the start of the reproductive season and stabilisation of social and spatial organization, but before the appearance of the animals born in the current year.

STUDY AREA, METHODS AND MATERIAL

The investigations were conducted in a large lowland forest called "Úpor Forest" situated on confluence of the Vltava and Laba rivers near the town of Mělník (Central Bohemia). A snap-trap line was constructed in ecotones along the periphery of Úpor Forest. Transect was situated in the inner (woodland) part of ecotones (wood-field, wood-meadow, wood-clearing, wood-
track), the most frequently about 5 metres from the forest border. The line was arranged in a circle-like manner. The circle was not fully closed, the transect was interrupted between the traps No. 1542 and No. 1. For the detail description of vegetation cover and line transect see Sádlo et al. (in prep.).

Altogether, 1542 snap-traps (size 10 x 5 cm) of the common type were used in 7.7 km line transect. Traps were spaced approximately 5 metres, and exposed during 3 successive nights starting from April 11th 1992. Traps were baited with standard bait: pieces of wick fried in fat and flour. During 4626 trap-nights 527 animals were captured. Day, number and location of trap were recorded for each animal.

After capture, all specimens were weighted, measured, and dissected, and the condition of their sexual organs was ascertained. Ear length and hind foot length were measured with the precision of 0.1 mm. Body length and tail length were recorded to the nearest millimetre. Body weight was identified with the precision of 0.1 gram.

In males, the condition and size of testes were recorded, their length and width were measured with the precision of 0.1 mm. Area of cross-section of the testes (AC-ST) was computed using formula: AC-ST [mm2] = testis length [mm] ÷ testis width [mm] . 3.1415 ÷ 4. In addition, the length of vesicular glands was measured from the point of their fusion to the outermost margin of their curvature.

In females, number of embryos and their length (taken in the longitudinal axis) were recorded as well as the number of placental scars. Embryos being conspicuously smaller than the remaining ones of the set, were considered as resorbed. On the basis of relationship between the length of an embryo and its weight as described in C. glareolus by Zedka (1968), weight of embryos in the set was calculated. Only net body weight of females without embryos was used in further analysis.

The term "mature" female is used for specimens which have already taken part in the reproduction, i.e., for females being either actually pregnant or lactant, or showing traces of the reproductive activity from the past - placental scars. On the contrary, for females which probably never have attained pregnancy during their life the denotation "immature" is used.

The material is deposited in the collections of the Department of Zoology, Charles University, Prague.

All the statistical treatments were performed using the programme Statgraphics version 4.2.

RESULTS

Basic characteristics
Abundance and synusys

In total 527 specimens belonging to 7 species were captured: 311 specimens (198 males and 113 females) of Clethrionomys glareolus (Schreber, 1780), 134 specimens (64 males and 70 females) of Apodemus flavicollis (Melchior, 1834), 49 (27 males and 22 females) specimens of Apodemus sylvaticus (Linnaeus, 1758), 25 specimens (18 males and 7 females) of Sorex araneus (Linnaeus), 1758, 4 specimens (3 males and 1 female) of Microtus arvalis (Pallas, 1779), 3 specimens (2 males and 1 female) of Sorex minutus Linnaeus, 1766), and 1 specimen (female) of Pitymys subterraneus (Selys Longchamps, 1836), (Table 1).

Dominant species: C. glareolus (59.0%), A. flavicollis (25.4%) and A. sylvaticus (9.3%) were used in further analysis. Other species were infrequent (S. araneus - 4.7%) or accessory (M. arvalis - 0.8%, S. minutus - 0.6%, P. subterraneus - 0.2%).

For the purpose of computing frequency the transect was divided into 31 samples each equal to standard line, i.e., 50 traps (or 42 traps in last sample) and about 250 m long. A. flavicollis was
present in all (F=100%) and C. glareolus in 30 (F=97%) of the 31 samples; hence, they can be
denoted as the enigmatic species (in sensu Balogh 1958). A. sylvaticus was found in 19 sam-
pies (F=61%) and S. araneus in 12 samples (F=39%), the former could be described as the
frequent and the later as the accessory species. M. arvalis (2 samples, F=6%), S. minutus and
P. subterraneus (1 sample, F=3%) must be considered the accessory species in the community
under study.

Relative abundance of the synusy was 11.3 individuals per 100 trap-nights, the correspond-
ning value computed separately for the first day of trapping being 18.9 (Table 1).

The probability of capture (Leslie & Davis 1939) computed for dominant species ranged
from 0.29 for females of A. sylvaticus to 0.74 for males of A. flavivolis (Table 2).

Population density was calculated from estimated catch size. For the conversion of estimated
catch size to the number per hectare, we used a stripe according to Pelikan (1975a). Widths of
stripes were given according to Pelikan (1975b) as 40 metres for males and 20 metres for fe-
males in C. glareolus and in A. sylvaticus 60 metres for males and 35 metres for females. In A. flavi-
collis we used with 70 metres for males and 50 metres for females, in accordance with Rodl
(1974a,b). The highest density was found in C. glareolus - 17.4 individuals per hectare, while in
A. flavivolis it was only 3.2 ind. per hectare and in wood mouse even 1.9 ind. per hectare.

Indices of species diversity (Shannon & Wiener 1963) and equitability (Sheldon 1969) were
H' = 1.59 and J' = 0.57, respectively.

Sexual activity and reproduction

Overwintered individuals prevailed in the populations of all the species under study. The
only exception was one juvenile pelaged male A. flavivolis weighing 13.5g, apparently born in
the current year.

Sex ratio could be evaluated in two most abundant species. It was approximately balanced in
A. flavivolis (47.8%, n=134), while the predominance of males is marked and significant in
C. glareolus (63.7%, n=311, Chi-square=11.6).

Overwintered males of all species were sexually active with fully developed testes and ves-
cular glands (Table 3).

Intensity of reproduction in females varied between species. 64% of 70 females and 45% of
22 females were found actually pregnant or lactant in A. flavivolis and in A. sylvaticus, respecti-
vally, while in C. glareolus it was only 12% of 104 females (Table 4). These differences can be
attributed to variation in the beginning of the reproductive season. All females in the M. arvalis
(n=1) and the P. subterraneus (n=1) were pregnant.

Data on litter size and embryonic resorption are given in Tables 5 and 6.

Body measures and weight

Biometric data for overwintered specimens of dominant species are given in Tables 7-8 and
Figure 1. Low variability, especially in C. glareolus, is apparent. Differences in body weight
and hand foot length between A. flavivolis and A. sylvaticus are marked as evident from Figure
2. These differences as well as coloration pattern of the pelage allowed the reliable taxonomic
determination of the material.

Interspecific and intraspecific spatial relationships

The following part of results is based on analysis of spatial relationships among species and
between sexes. For this purpose we used data on the distribution of animals captured along the
Table 1. Number of individuals captured (n), relative abundance (A) and dominance (D) computed for the total material. Number of individuals (n) and relative abundance (A1) computed for the first trapping day only. Relative abundance is given as number of individuals captured per 100 trap-nights.

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>A</th>
<th>n1</th>
<th>A1</th>
<th>D(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. glareolus</td>
<td>311</td>
<td>6.72</td>
<td>159</td>
<td>10.31</td>
<td>59.0</td>
</tr>
<tr>
<td>A. flavicollis</td>
<td>134</td>
<td>2.90</td>
<td>90</td>
<td>5.83</td>
<td>25.4</td>
</tr>
<tr>
<td>A. sylvaticus</td>
<td>49</td>
<td>1.06</td>
<td>26</td>
<td>3.18</td>
<td>9.3</td>
</tr>
<tr>
<td>S. araneus</td>
<td>25</td>
<td>0.54</td>
<td>14</td>
<td>0.91</td>
<td>4.7</td>
</tr>
<tr>
<td>M. arvalis</td>
<td>4</td>
<td>0.08</td>
<td>3</td>
<td>0.19</td>
<td>0.8</td>
</tr>
<tr>
<td>S. minutus</td>
<td>3</td>
<td>0.08</td>
<td>0</td>
<td>0.00</td>
<td>0.5</td>
</tr>
<tr>
<td>P. subterraneus</td>
<td>1</td>
<td>0.02</td>
<td>0</td>
<td>0.00</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>527</td>
<td>11.29</td>
<td>292</td>
<td>18.94</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2. Number of individuals captured - actual catch size (N), probability of capture (p), estimated catch size (N), effective area [ha], and density [individuals per ha].

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>p</th>
<th>N</th>
<th>ha</th>
<th>Ind./ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. flavicollis</td>
<td>64</td>
<td>0.74</td>
<td>64.9</td>
<td>53.97</td>
<td>1.20</td>
</tr>
<tr>
<td>Males</td>
<td>70</td>
<td>0.54</td>
<td>77.8</td>
<td>38.55</td>
<td>2.02</td>
</tr>
<tr>
<td>Females</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td>3.22</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. sylvaticus</td>
<td>27</td>
<td>0.53</td>
<td>30.2</td>
<td>46.26</td>
<td>0.65</td>
</tr>
<tr>
<td>Males</td>
<td>22</td>
<td>0.29</td>
<td>34.5</td>
<td>26.99</td>
<td>1.28</td>
</tr>
<tr>
<td>Females</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>1.93</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. glareolus</td>
<td>198</td>
<td>0.39</td>
<td>256.4</td>
<td>30.84</td>
<td>8.32</td>
</tr>
<tr>
<td>Males</td>
<td>113</td>
<td>0.42</td>
<td>140.5</td>
<td>15.42</td>
<td>9.11</td>
</tr>
<tr>
<td>Females</td>
<td>311</td>
<td></td>
<td></td>
<td></td>
<td>17.43</td>
</tr>
</tbody>
</table>

Table 3. Mean testes size (AC-ST area of the cross-section of the testes) and length of vesiculae seminales in overwintered males of dominant species.

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>Mean</th>
<th>S.D.</th>
<th>S.E.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testes size AC-ST [mm²]:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. flavicollis</td>
<td>62</td>
<td>80.5</td>
<td>10.4</td>
<td>1.3</td>
<td>46</td>
<td>108</td>
</tr>
<tr>
<td>A. sylvaticus</td>
<td>26</td>
<td>82.3</td>
<td>8.7</td>
<td>1.7</td>
<td>69</td>
<td>100</td>
</tr>
<tr>
<td>C. glareolus</td>
<td>195</td>
<td>71.8</td>
<td>8.4</td>
<td>.8</td>
<td>44</td>
<td>97</td>
</tr>
<tr>
<td>Length of vesiculae seminales [mm]:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. flavicollis</td>
<td>63</td>
<td>14.9</td>
<td>1.7</td>
<td>.2</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>A. sylvaticus</td>
<td>26</td>
<td>13.1</td>
<td>1.6</td>
<td>.3</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C. glareolus</td>
<td>195</td>
<td>12.1</td>
<td>1.8</td>
<td>.1</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>
Table 4. Proportion of sexually active and inactive females in the sample [%]

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>sexually pregnant</th>
<th>lactant</th>
<th>%</th>
<th>sexually mature</th>
<th>immature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. flavicollis</td>
<td>70</td>
<td>29</td>
<td>16</td>
<td>64</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>A. sylvaticus</td>
<td>22</td>
<td>8</td>
<td>2</td>
<td>45</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>C. glareolus</td>
<td>104</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 5. Litter size in dominant species

<table>
<thead>
<tr>
<th>Species</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>n</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. flavicollis</td>
<td>1</td>
<td>-</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>29</td>
<td>5.07</td>
</tr>
<tr>
<td>A. sylvaticus</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>8</td>
<td>5.38</td>
</tr>
<tr>
<td>C. glareolus</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>7</td>
<td>4.71</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Embryonic resorption in Apodemus flavicollis

<table>
<thead>
<tr>
<th></th>
<th>Litter size</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>resorbed</td>
<td>1</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>%</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>embryos</td>
<td>4</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>resorbed</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In C. glareolus resorption was found in one of seven litters examined. Two of three embryos in the set were affected.

Table 7. Mean body weight and hind foot length in overwintered specimens of dominant species. (F = females; M = males)

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>Mean</th>
<th>S.D.</th>
<th>S.E.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight [g]:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. flavicollis F</td>
<td>66</td>
<td>30.27</td>
<td>3.57</td>
<td>.44</td>
<td>22.5</td>
<td>37.4</td>
</tr>
<tr>
<td>M</td>
<td>62</td>
<td>37.20</td>
<td>4.57</td>
<td>.58</td>
<td>28.2</td>
<td>47.6</td>
</tr>
<tr>
<td>A. sylvaticus F</td>
<td>22</td>
<td>20.64</td>
<td>2.90</td>
<td>.62</td>
<td>15.7</td>
<td>27.7</td>
</tr>
<tr>
<td>M</td>
<td>26</td>
<td>23.69</td>
<td>2.22</td>
<td>.64</td>
<td>17.2</td>
<td>27.9</td>
</tr>
<tr>
<td>C. glareolus F</td>
<td>109</td>
<td>20.57</td>
<td>2.00</td>
<td>.19</td>
<td>16.3</td>
<td>25.6</td>
</tr>
<tr>
<td>M</td>
<td>195</td>
<td>25.39</td>
<td>2.00</td>
<td>.14</td>
<td>19.4</td>
<td>31.1</td>
</tr>
<tr>
<td>Length of the hind foot [mm]:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. flavicollis F</td>
<td>66</td>
<td>23.39</td>
<td>.75</td>
<td>.09</td>
<td>21.6</td>
<td>25.3</td>
</tr>
<tr>
<td>M</td>
<td>63</td>
<td>24.18</td>
<td>.82</td>
<td>.10</td>
<td>22.5</td>
<td>26.0</td>
</tr>
<tr>
<td>A. sylvaticus F</td>
<td>22</td>
<td>20.40</td>
<td>.69</td>
<td>.15</td>
<td>19.3</td>
<td>21.5</td>
</tr>
<tr>
<td>M</td>
<td>26</td>
<td>21.18</td>
<td>.63</td>
<td>.12</td>
<td>19.9</td>
<td>22.5</td>
</tr>
<tr>
<td>C. glareolus F</td>
<td>113</td>
<td>17.29</td>
<td>.56</td>
<td>.05</td>
<td>16.0</td>
<td>19.0</td>
</tr>
<tr>
<td>M</td>
<td>195</td>
<td>17.48</td>
<td>.58</td>
<td>.04</td>
<td>16.0</td>
<td>18.7</td>
</tr>
</tbody>
</table>
line transect, i.e., along the sequence of successive snap-traps. Data obtained during the first, second and third night of trapping were pooled. Using the tests of binary sequences or randomness we treated captured individuals in ordered sequence according to their trap numbers, while empty traps were excluded. In cases in which more animals were captured to the same trap, they were ordered according to the day of capture.

Fig. 2. Scatter-plots of body weight and hind foot length for Apodemus sp.
Interspecific comparisons

In order to compare the general distribution pattern of different species, we computed the smoothed relative abundance per trap (i.e., average value for each trap and certain number of neighbouring traps) for each dominant species. Smoothing was made for 21 traps (i.e., 100 m) and 11 traps (i.e., 50 m). No obvious correlation among distribution patterns of individual species is visible from the plot of the smoothed relative abundance (Figure 3). Also correlation coefficients of these data indicate unimportance of interspecific interactions (Spearman rank

![Graph of Apodemus flavicollis](image1)

![Graph of Apodemus sylvaticus](image2)

![Graph of Clethrionomys glareolus](image3)

Fig. 3. Variation in relative abundance [individuals per trap] along the transect - data smoothed for 21 traps.
Table 8. Mean body length, tail length and ear length in overwintered specimens of dominant species

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>Mean [mm]</th>
<th>S.D.</th>
<th>S.E.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body length [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. flavicollis F</td>
<td>65</td>
<td>103.60</td>
<td>4.22</td>
<td>.52</td>
<td>94</td>
<td>115</td>
</tr>
<tr>
<td>M</td>
<td>69</td>
<td>109.47</td>
<td>5.95</td>
<td>.76</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>A. sylvatica F</td>
<td>26</td>
<td>90.91</td>
<td>4.56</td>
<td>.97</td>
<td>85</td>
<td>102</td>
</tr>
<tr>
<td>M</td>
<td>26</td>
<td>95.58</td>
<td>2.89</td>
<td>.57</td>
<td>91</td>
<td>102</td>
</tr>
<tr>
<td>C. glareolus F</td>
<td>111</td>
<td>55.52</td>
<td>4.36</td>
<td>.43</td>
<td>83</td>
<td>106</td>
</tr>
<tr>
<td>M</td>
<td>111</td>
<td>59.81</td>
<td>3.85</td>
<td>.28</td>
<td>88</td>
<td>109</td>
</tr>
<tr>
<td>Tail length [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. flavicollis F</td>
<td>52</td>
<td>103.50</td>
<td>6.62</td>
<td>.92</td>
<td>80</td>
<td>113</td>
</tr>
<tr>
<td>M</td>
<td>57</td>
<td>105.88</td>
<td>7.66</td>
<td>1.01</td>
<td>78</td>
<td>122</td>
</tr>
<tr>
<td>A. sylvatica F</td>
<td>18</td>
<td>90.78</td>
<td>4.83</td>
<td>1.14</td>
<td>71</td>
<td>88</td>
</tr>
<tr>
<td>M</td>
<td>23</td>
<td>84.83</td>
<td>4.71</td>
<td>.96</td>
<td>76</td>
<td>94</td>
</tr>
<tr>
<td>C. glareolus F</td>
<td>110</td>
<td>45.25</td>
<td>3.43</td>
<td>.33</td>
<td>38</td>
<td>54</td>
</tr>
<tr>
<td>M</td>
<td>184</td>
<td>47.30</td>
<td>2.95</td>
<td>.22</td>
<td>41</td>
<td>57</td>
</tr>
<tr>
<td>Ear length [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. flavicollis F</td>
<td>66</td>
<td>17.53</td>
<td>9.2</td>
<td>.11</td>
<td>15</td>
<td>19.6</td>
</tr>
<tr>
<td>M</td>
<td>62</td>
<td>18.01</td>
<td>1.07</td>
<td>.14</td>
<td>14</td>
<td>20.1</td>
</tr>
<tr>
<td>A. sylvatica F</td>
<td>22</td>
<td>15.81</td>
<td>6.4</td>
<td>.14</td>
<td>14</td>
<td>19.6</td>
</tr>
<tr>
<td>M</td>
<td>26</td>
<td>16.02</td>
<td>7.4</td>
<td>.15</td>
<td>14</td>
<td>20.1</td>
</tr>
</tbody>
</table>

Table 9. Spearman coefficients of correlation for relative abundances smoothed for 11 traps

<table>
<thead>
<tr>
<th></th>
<th>C. glareolus</th>
<th>A. flavicollis</th>
<th>A. sylvatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>males</td>
<td>females</td>
<td>males</td>
</tr>
<tr>
<td>C. glareolus males</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C. glareolus females</td>
<td>-0.32</td>
<td></td>
<td>-0.07</td>
</tr>
<tr>
<td>A. flavicollis males</td>
<td>-0.02</td>
<td></td>
<td>-0.12</td>
</tr>
<tr>
<td>A. flavicollis females</td>
<td>-0.02</td>
<td></td>
<td>-0.02</td>
</tr>
<tr>
<td>A. sylvatica males</td>
<td>-0.04</td>
<td></td>
<td>+0.05</td>
</tr>
<tr>
<td>A. sylvatica females</td>
<td>-0.04</td>
<td></td>
<td>+0.05</td>
</tr>
</tbody>
</table>

Table 10. Results of tests for binary sequences - interspecific comparisons

<table>
<thead>
<tr>
<th></th>
<th>Number of runs</th>
<th>Expected</th>
<th>z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. flavicollis x A. sylvatica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>males A.F. x males A.s.</td>
<td>56</td>
<td>72.8</td>
<td>-3.07</td>
<td>0.0021</td>
</tr>
<tr>
<td>females A.F. x females A.f.</td>
<td>34</td>
<td>39.0</td>
<td>-1.13</td>
<td>0.2570</td>
</tr>
<tr>
<td>A. flavicollis x C. glareolus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>males A.F. x males C.g.</td>
<td>156</td>
<td>188.3</td>
<td>-3.58</td>
<td>0.0003</td>
</tr>
<tr>
<td>females A.F. x females C.g.</td>
<td>86</td>
<td>97.7</td>
<td>-1.89</td>
<td>0.0593</td>
</tr>
<tr>
<td>A. sylvatica x C. glareolus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>males A.s. x males C.g.</td>
<td>74</td>
<td>87.0</td>
<td>-2.03</td>
<td>0.0421</td>
</tr>
<tr>
<td>females A.s. x females C.g.</td>
<td>70</td>
<td>85.7</td>
<td>-3.41</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>48.5</td>
<td>-3.19</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>37.8</td>
<td>-1.06</td>
<td>0.2886</td>
</tr>
</tbody>
</table>
correlation coefficients for relative abundance smoothed for 21 traps: $A.\ flavicollis \times C.\ glareolus$ $r=0.029$, $A.\ sylvaticus \times C.\ glareolus$ $r=0.006$, $A.\ flavicollis \times A.\ sylvaticus$ $r=0.104$. Smoothed values of relative abundance (11 traps) for conspecific sexes are positively correlated, while interspecific correlations are insignificant (Table 9).

We used also runs tests for binary sequences for original data (Table 10). Sequences of animals captured along the transect were treated separately for each pair of dominant species. The null hypothesis claims that the sequence is random. The results showed lower number of runs (iterations - sequences in which only one species was captured) than should be expected in a random order. However, significant differences disappeared (with the exception of following interactions: females $A.\ flavicollis$ versus $C.\ glareolus$, males $A.\ sylvaticus$ versus $C.\ glareolus$) after subdivision of material according to sexes. It may be caused both by intersexual interactions and by a small sample size. Evaluating these results we ought to keep in the mind that social organisation could influence the results. Social units, not simply individuals, ought to be evaluated in this analysis.

![Frequency histograms for relative distance, expressed as number of traps, between neighbouring conspecific individuals of the same sex divided by mean distance.](image)

Fig. 4. Frequency histograms for relative distance, expressed as number of traps, between neighbouring conspecific individuals of the same sex divided by mean distance.
Table 11. Results of tests for binary sequences - comparison between sexes

<table>
<thead>
<tr>
<th></th>
<th>Number of runs</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Expected</td>
<td>z</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>A. flavicollis males x females</td>
<td>70</td>
<td>67.8</td>
<td>0.28</td>
<td>0.776</td>
<td></td>
</tr>
<tr>
<td>A. sylvaticus males x females</td>
<td>22</td>
<td>25.2</td>
<td>-1.09</td>
<td>0.274</td>
<td></td>
</tr>
<tr>
<td>C. glareolus males x females</td>
<td>149</td>
<td>144.9</td>
<td>0.44</td>
<td>0.657</td>
<td></td>
</tr>
</tbody>
</table>

Table 12. Number and composition of clusters of animals. Individuals are considered to be members of the same cluster on condition that neighbouring animals were captured to traps spaced 5 meters or less in the line transect (condition=5m). In addition, we used also more extended clusters containing animals spaced 15 m or less (condition=15m).

<table>
<thead>
<tr>
<th>Composition of cluster</th>
<th>A. flavicollis</th>
<th>A. sylvaticus</th>
<th>C. glareolus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>15</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>male + male</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>male + female</td>
<td>15</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>female + female</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>male + 2 females</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2 males + female</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3 females</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 males</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 males + 2 females</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>male + 3 females</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 males + female</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 males</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2 males + 3 females</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 males + female</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Male-female relationships

We used runs tests for binary sequences in order to test the randomness of ordered sequence of conspecific males and females. Results shown at Table 11 are in accordance with the random distribution of sexes along the line-transect. However, the length of space between neighbouring animals is not evaluated in this method. Therefore we analysed composition of clusters of conspecific individuals (Table 12). Individuals were considered to be members of the same cluster on condition that neighbouring animals were captured to traps spaced 5 meters (15 meters) or less in the line transect. In A. flavicollis male-female clusters dominate over unisexual pairs (Chi-square=9.7, p<0.01).

In C. glareolus higher relative percentage of males was found in clusters (n=160, 110 males, 69%) than in non-clustered individuals (n=151, 88 males, 58%). However, this difference is an artefact caused by single criterion for identification of clustered individuals of both sexes interacting with unbalanced sex ratio.

No clear differences in trapability and sex ratio were found between the material obtained in areas of high and low relative abundance (Table 13).
Table 13. Sex ratio and trappability (expressed as proportion of animals captured during the first night of trapping (day 1) in animals captured in areas of high and low relative abundance (individuals per trap - smoothed data for 21 traps)

<table>
<thead>
<tr>
<th>Abundance</th>
<th>n</th>
<th>males</th>
<th>day1</th>
<th>%</th>
<th>females</th>
<th>day1</th>
<th>%</th>
<th>Sex ratio %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. glareolus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low (0.25)</td>
<td>131</td>
<td>83</td>
<td>42</td>
<td>51</td>
<td>48</td>
<td>23</td>
<td>48</td>
<td>63</td>
</tr>
<tr>
<td>medium (0.35)</td>
<td>88</td>
<td>58</td>
<td>27</td>
<td>47</td>
<td>30</td>
<td>13</td>
<td>43</td>
<td>66</td>
</tr>
<tr>
<td>high (0.35)</td>
<td>92</td>
<td>57</td>
<td>31</td>
<td>54</td>
<td>35</td>
<td>23</td>
<td>66</td>
<td>62</td>
</tr>
<tr>
<td>A. flavicolis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low (0.14)</td>
<td>40</td>
<td>24</td>
<td>21</td>
<td>88</td>
<td>25</td>
<td>15</td>
<td>60</td>
<td>49</td>
</tr>
<tr>
<td>high (0.14)</td>
<td>85</td>
<td>40</td>
<td>27</td>
<td>68</td>
<td>40</td>
<td>27</td>
<td>68</td>
<td>47</td>
</tr>
<tr>
<td>A. sylvaticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low (0.10)</td>
<td>28</td>
<td>16</td>
<td>9</td>
<td>(56)</td>
<td>12</td>
<td>5</td>
<td>(42)</td>
<td>57</td>
</tr>
<tr>
<td>high (0.10)</td>
<td>21</td>
<td>11</td>
<td>7</td>
<td>(64)</td>
<td>10</td>
<td>5</td>
<td>(50)</td>
<td>52</td>
</tr>
</tbody>
</table>

Table 14. Results of tests for randomness (distance between individuals of the same species and sex)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Number of runs</th>
<th></th>
<th></th>
<th>z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. flavicolis males</td>
<td>64</td>
<td>39</td>
<td>32.9</td>
<td>1.42</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>A. flavicolis females</td>
<td>70</td>
<td>43</td>
<td>36.0</td>
<td>1.57</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>C. glareolus males</td>
<td>198</td>
<td>97</td>
<td>99.6</td>
<td>-0.31</td>
<td>0.759</td>
<td></td>
</tr>
<tr>
<td>C. glareolus females</td>
<td>113</td>
<td>59</td>
<td>57.5</td>
<td>0.19</td>
<td>0.840</td>
<td></td>
</tr>
</tbody>
</table>

Table 15. Results of tests for randomness (body weight)

<table>
<thead>
<tr>
<th></th>
<th>Number of runs</th>
<th></th>
<th></th>
<th>z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. flavicolis males</td>
<td>42</td>
<td>40.3</td>
<td>0.36</td>
<td>0.7191</td>
<td></td>
</tr>
<tr>
<td>A. flavicolis females</td>
<td>46</td>
<td>43.7</td>
<td>0.54</td>
<td>0.5873</td>
<td></td>
</tr>
<tr>
<td>A. sylvaticus males</td>
<td>19</td>
<td>17.0</td>
<td>0.72</td>
<td>0.4692</td>
<td></td>
</tr>
<tr>
<td>A. sylvaticus females</td>
<td>15</td>
<td>14.3</td>
<td>0.09</td>
<td>0.9299</td>
<td></td>
</tr>
<tr>
<td>C. glareolus males</td>
<td>127</td>
<td>127.7</td>
<td>-0.02</td>
<td>0.9771</td>
<td></td>
</tr>
<tr>
<td>C. glareolus females</td>
<td>68</td>
<td>71.7</td>
<td>-0.73</td>
<td>0.4661</td>
<td></td>
</tr>
</tbody>
</table>

Intrasexual comparisons

In order to describe dispersion of animals on the transect we plotted frequency histograms for relative distances expressed as number of traps between neighbouring conspecific individuals of the same sex divided by average distance (Figure 4). Coefficients of variation (C.V. = standard deviation / mean) for these distances were higher in C. glareolus (females: C.V. = 1.37, males: C.V. = 1.60) than in A. flavicolis (females: C.V. = 0.91, males: C.V. = 1.33). However, tests for randomness (i.e., runs test for testing sequence of values above and below the median) did not
show significant deviation from a random order in any species and sex (Table 14).

We tested tests for randomness also for the testing of the distribution of body weight along the transect. In all possessed species (Table 15) the results are not in contradiction with random order.

Mean body weights of individuals within a cluster (i.e., two or more conspecific animals of the same sex captured to the same or neighbouring trap) were almost identical in both sexes of *A. flavicollis* and *C. glareolus*. Similar results were obtained after subdivision of the animals according to categories of smoothed relative abundance. Also the animals captured to the same or neighbouring trap as another conspecific animal of the opposite sex, if compared with other animals of the same species and sex, did not show any significant difference in their body weight. However, a slide tendency to lower weight was found in male *A. flavicollis* of this group (Table 16).

In *A. flavicollis* we tested if pregnant females are clustered or distributed at random. We used tests for binary sequences for pregnant and non-pregnant females. 34 runs (iterations) was found. It is in accordance with 34.97 the expected value for random sequence ($z=0.12$, $p=0.91$).

DISCUSSION

Basic characteristics

Species composition as well as other basic parameters of the synusia found in "Upper Forest" are in general accordance with that in lowland forests on the territory of Prague (Chákočová 1989, Frynta et al. in prep.) or in Southern Moravia (Zejda 1973, 1976, Pelikán et al. 1974). Relative abundance and density of dominant species followed long-term averages given in literature cited above.

Reproductive parameters found in our sample are not in contradiction with literary data, either. Low proportion of pregnant or lactant females in our material of *C. glareolus* indicates that reproduction in this population just started at the time of our investigation. The onset of breeding was probably in late March, i.e., in the period close to that (early April) in which the beginning of *C. glareolus* reproductive season in Central Europe is most frequently reported (Bujalska 1983a). Predominance of males, which is apparent in our sample of *C. glareolus*, seems to be typical for overwintered animals of this species collected in spring (Bujalska 1983b). On the contrary, the proportion of breeding females was high in *A. sylvaticus* and especially in *A. flavicollis*, in which the presence of a juvenile male also indicates early onset of breeding. Similarly, beginning of the breeding season in *A. flavicollis* is earlier, than in *C. glareolus* in Southern Moravia (Zejda 1976).

Mean litter size 3.07 in our material of *A. flavicollis* is almost identical to long-term average value 3.04 reported by Pelikán (1966a). Also the proportions of pregnant females in our samples
of *A. flavicollis* (41.4%, n=70) and *A. sylvaticus* females (36.4%, n=22) are close to those given in literature for April samples from Southern Moravia (*A. flavicollis*: 55%, n=33; *A. sylvaticus*: 47%, n=34; Pelikán 1966b) and Prague (*A. sylvaticus*: 31%, n=52; Frynta & Vohradský in press).

Spatial relationships

The importance of spatial relationships and heterogeneity is evident from the fact that spatial variation in abundance is frequently as large as the temporal range in population size, as reported by Montgomery (1989) for *A. sylvaticus*. Evaluating spatial relationships among individuals of *Clethrionomys glareolus*, *A. flavicollis* and *A. sylvaticus* in the sample, obtained by means of snap-traps, we ought to keep in mind that this method has its own limitations, which cannot be excluded. The following sources of possible errors must be mentioned:

Resident animals could be captured everywhere within their home range and, therefore, we receive only limited information about their distribution. The quality of this information depends on home size and individual spatiotemporal activity of the animal. However, these variables are affected by many factors, as for example habitat, season, density etc. (Mazurkiewicz 1971, 1983; Bondrup-Nielsen & Karlson 1985) Also the presence of migrants (Bashenna & Ortolova 1981, Petruszewicz 1983, Bondrup-Nielsen 1985), which cannot be simply recognized among residents without using additional marking procedures (e.g. live traps or prebaiting - Holíčková 1968), may devalue results. Rearrangement of social organisation is usually reported from the period prior to the onset of breeding (Kikkawa 1964, Gliszczyński & Rajka-Jurgiel 1983), that is why we decided to collect our sample in the period after the beginning of the breeding period. On the other hand, even animals with established home ranges can display different trapability. While trap-prone animals can be successfully captured during short-term trapping effort, trap-shy animals remain to be unrecognized (Andrzejewski et al. 1971).

Behavioural responses to odour of previous animal captured to the trap may influence the final distribution of captured individuals. It was reported that presence of male *A. flavicollis* in double-trap caused lower probability of capture for *C. glareolus* (Kalinska 1971). The superiority of *A. flavicollis* over *C. glareolus* and *A. sylvaticus* in the dominance rank was observed in experimental situations (Andrzejewski & Olszewski 1963, Montgomery 1978).

Factors mentioned above could produce errors which may mask possible relationships. Therefore, negative results must be evaluated carefully. Composition of clusters of animals captured to the same or nearest neighbouring traps must be evaluated on the basis of present knowledge on their social and reproductive systems. Exclusive territories are typical for female *C. glareolus*. Males home ranges are larger and overlapping territories of several females (Bijalska 1973, 1985, Vuitla & Hoffmeyer 1985, etc.). Spatial distribution of males seems to be a result of the primary distribution of females in *Clethrionomys* species (*C. rufocanus* Lim 1988). For *A. flavicollis* only indirect information about their social and reproductive system is available. In our material, several cases in which the male was captured in the proximity of a female and spaced by long distance from other pairs or individuals were present. However, this finding is based on limited material and, therefore, additional data for further analysis of this phenomenon are needed.

REFERENCES

BALOGH J 1958 Lebensgemeinschaften der Landtiere Budapest-Berlin, 560 pp
BONDURUP-NIELSEN S 1985 An evaluation of the effects of space use and habitat patterns on dispersal in small mammals Ann Zool Fennici 22 373-383
BONDURUP-NIELSEN S & F KARLSON 1985 Movements and spatial patterns in populations of Clethrionomys species A review Ann Zool Fennici 22 385-392
BUJALSKA G 1973 The role of spacing behaviour among females in the regulation of reproduction of the Bank vole J Reprod Fert Suppl 19 463-472
BUJALSKA G 1985 Regulation of female mauration in Clethrionomys species, with special reference to an island population of Clethrionomys glareolus Ann Zool Fennici 22 331-342
FRYNTA D, VOHRALÍK V & J ŘEZNIČEK (in prep.) The distribution of small mammals (Insectivora, Rodentia) in Prague Acta Univ Carolinae Biol
HOLOŠOVÁ V 1966 Results of experimental mating of a small mammals with a marking bint Zool Listy 17 311-325
IBMS R A 1988 Spatial clustering of sexually receptive females induces space sharing among male voles Nature 335 541-543
KALINOWSKA A 1971 Trapping of Apodemus flavicollis and Clethrionomys glareolus into a double trap Acta Theriol 16 73-78
KIKKAWA J 1964 Movement, activity and distribution of small rodents Clethrionomys glareolus and Apodemus sylvaticus in woodland J Anim Ecol 33 259-299
LESILIE P H & D H S DAVIES 1959 An attempt to determine the absolute number of rats on a given area J Anim Ecol 8 94-113 (ex Pelikan 1976)
MAZURKIEWICZ M 1971 Shape, size and distribution of home ranges of Clethrionomys glareolus (Schreber, 1780) Acta Theriol 16 23-60
MONTGOMERY W I 1978 Inters and inter-specific interactions of Apodemus sylvaticus (L.) and A flavicollis (Melch.) under laboratory conditions Anim Behav 26 1247-1254
PELIKAN J 1966a Analysis of the population dynamics of Apodemus flavicollis and A sylvaticus in field conditions Acta Theriol 31 31-37
PELIKAN J 1966b Comparison of the birth rates in four Apodemus species Zool Listy 15 125-130 (in Czech with a summary in English)
PELIKAN J 1975a On the standardization of the trapping quadrat and line for estimating the population density of small mammals in forests Zooty, n s 17 58-71 (in Czech with a summary in English)

New records of Scarabaeoidea (Coleoptera) from Bulgaria

David KRÁL 1) & Vladislav MALÝ 2)

1) Department of Zoology, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
2) Na hrobci 1, CZ-128 00 Praha 2, Czech Republic

Received December 1, 1992; accepted February 18, 1993
Published June 25, 1993

Faunistica, distribution, Scarabaeoidea, Coleoptera, Bulgaria, Balkan peninsula, habitats

Abstract. The survey of the distribution of 64 Bulgarian Scarabaeoid species (Coleoptera) is presented. 35 species of these are recorded from Bulgaria for the first time. According to our knowledge seven of these have not been reported from the Balkan peninsula up to the present time: Trypocopris fulexius (Metschulsky), Chirorinus haroldi (Ballion), Onthophagus angustus Petrovitz, Aphodius citellorum Samsonov & Medvedev, A. rotundangulus Reitter, A. famigatus Reitter and A. sculptatus Reitter. All records from Bulgaria available were summarized for each species under study. Some details on biotopes and habitats are mentioned.

The results of the study of an extensive but rich material of Scarabaeoid beetles collected by the authors and by many other predominantly Czech entomologists in Bulgaria during recent years are given. Only the species recorded for the first time from Bulgaria, the rare species and the species remarkable from the zoogeographical point of view are mentioned and discussed here.

The classification on the family level was taken over from Crawson (1981). The subgenera classification in the genus Aphodius Illiger is very complicated and non-uniform at the present time (see e.g. Balthasar 1964, Dellacasa 1988 and Nikolajev 1987). In this paper the authors used more or less common concept (e.g. Balthasar 1964, Mikšic 1970) but the subgenera are admitted by the authors as "working groups".

The international standard was used for the transliteration from the Cyrillic characters into the Roman characters.

In the text the following abbreviations were used:
alt. - above sea level altitude, Ml(s). Mountain(s), nr. - near, vill. - village, env. - environments.
± - more or less.
lgt. - collected by, det. - determined by, coll. - collection of (not collector!), rev. - determination revised by, K - Král, M - Malý (e.g. M lgt. - collected by Malý, only M - Malý lgt. det. and coll.
- - first record from Bulgaria, ME - material examined, D - distribution in the Balkan peninsula, A - Albania, B - Bulgaria, G - Greece, J - former Yugoslavia, T - European Turkey, N - note.
x - males/females, spec. - specimen(s).
LIST OF LOCALITIES (see map in Fig. 1)

1. Achetopol (town), alt <100 m, 1974 9-16 v., K, 1976 3 v., M
2. Agos (town), S foot of the ridge Ajoska planina, E Stara planina Mts., alt <100 m, 1976 v., M, 1982 27 v., K
4. Asenovgrad (town), N foot of C Rodopi Mts., alt 200-500 m, 1981 17 v., K
7. Bandera (tourist hut), V Pirin Mts., alt 1800 m, 1987 9 v., K
8. Batovo (vill.), nr Balášov, alt 100 m, 1987 8-9 v., O Hovorka (coll.), K det., coll
11. Bisec (vill.), nr Chamnati, alt 100 m, 1981 11-13 v., K
12. Bomanovo (vill.), nr Radomir, alt 700 m, 1986 9 v., K
13. Bomia (hills), nr Mečina, alt 200 m, 1986 16-24 v., J Kohlaš (coll.), K det., coll
14. Božíraj (tourist hut), nr Golbovo, alt 150 m, 1982 7-13 v., V Volahlik (coll.), K det., coll
19. Černomorc (vill.), nr Sozopol, alt <50 m, 1978 8 v., J Tuček (coll.), K det., coll
21. Dabovo (railway station), S foot of the ridge Tresnenska planina, C Stara planina Mts., alt 300-400 m, 1983 5 v., K
22. Daskovë (vill.), W foot of the ridge Kamčica planina, E Stara planina Mts., alt 2400 m, 1983 25-29 v., K.
24. Dolna Dukanka (vill.), SW foot of the ridge Golo bardo, alt 1700 m, 1975 17 v., K
25. Dospit (town), C Rodopi Mts., alt 2000 m, 1987 10 v., K
26. Generali Toplov (town), the Dobrudžansko plateau, alt 200 m, 1982 27 v., K.
27. Gorna (vill.), S foot of the ridge Berisovka planina, W Stara planina Mts., alt 1200 m, 1987 2 v., K.
28. Gostom-Pirevë (Mts.), the ridge Ceramica, C Rodopi Mts., alt 1600-2000 m, 1984 29 v., K.
29. Gorna Orjachovica (town), alt 100-200 m, 1981 10 v., K
30. Izgrev (vill.), nr Mečina, alt 100 m, 1976 13 v., M
32. Kamčica (vill.), S foot of the ridge Vrbščka planina, E Stara planina Mts., alt 200-400 m, 1981 15 v., K
33. Kalina (vill.), nr Melnik, SW foot of the Pirin Mts., alt 600-700 m, 1983 21-22 v., M
34. Kopotoš (elev of tourist hut), V. Vugalo (M), alt 1600-1800 m, 1986 19-24 v., K.
35. Kozariš (oligotrophic limestone hill), nr Petrov, alt 100-200 m, 1979 29 v., K
36. Kramnica (vill.), nr Burgas, alt 500 m, 1979 7 v., L Menel (coll), K det., K rev., coll.
37. Kranëve (vill.), nr Balak, alt 50-100 m, 1972 v., J Šufo (coll.), K det., M coll.
Fig. 1. Sketch-map of Bulgaria with the survey of the localities visited. (No 1-76 see List of localities).

SURVEY OF SPECIES

Lucanidae

* Dorcus peyroni Reiche, 1856
ME: Lebusca 1979 - 2 spec., in flight at about 10 p.m., old grove of Pinus orientalis; 1986, 1987 - rest of 2 resp. 1 spec., rotten trunk of P. orientalis; Morničigrad - 1 spec.; Sandanski 1973a - 1/0; Simitli - 1/0.
D: G (Hollanara (1985) - recent record from Greek Macedonia).

* Aesalus scarabaeoides (Panzer, 1774)
ME: Arikutlin 1983 - 2 spec., rotten stump of Quercus, margin of flooded plain forest
D: J, T.

Trogidae

Glaresis rufa Erichson, 1848
ME: Chornalchi 1974, 1975 - about 80 spec., at light in the camping south of the town, the species lives there in
shore sand of the river Marica; Sozopol 1969 - more spec., at light, seashore dunes
D: J and B - only one record by Gottwald (1966) without precise data. Confirmed occurrence in Bulgaria.

Geotrupidae

Botobolus unicornis (Schrank, 1789)
ME: Mebarin 1982 - 1/0, at light; Sumea - 2/0.
D. J. G and B - only old records from Razgrad (Markov 1909) and from Carahere and Pleven (Nedjalkov 1905). Confirmed occurrence in Bulgaria.

Trypocoris anedel (Paujière, 1855).
ME: Varna - 1 spec., clear deciduous forest, pitfall traps.
D. G. T and B - only one old record from Kalovo (the Stranda Mts.) by Tsal (1935). Confirmed occurrence in Bulgaria.

Trypocoris fulgidus (Motschulsky, 1845)
ME: Bonag - more spec., clear deciduous forest; Božara - 20, Mišarina 1975, 1981 - 1 spec., resp. 0/1.
D: First record from the Balkan peninsula, hitherto reliably recorded from Turkey only.
N: This species is closely related to *T. caspicus* (Motschulsky) and *T. vernalis* (Linnaeus), as a separate species was differentiated only recently (Zunino 1975).

Theodorus punculatus (Jekel 1865)
ME: Konitsa - about 30 spec., deciduous, less frequently in coniferous forest, after a heavy rain just on a pathway; Vlačun - more spec.; Veselka - 1/1.
N: Rare species, secretive in its habitat. The population from the Rila Mts. was described as *T. punculatus rhenensis* Tsal. It is possible that the specimens from the Pirin Mts. and from the Vitosha Mts. concern this subspecies but for answering this problem it is necessary to have enough material from the whole area of occurrence.

Hybosoridae.

Chaetonyx robustus Schaum, 1862
ME: Liljanovo 1979, 1986 - 1/1 and 0/1, under stone, pasture. Tsernitsa - 1 spec., under stone.
D. A. J, G. T and B - old record without precise data by Likichev (1959) and old records from Karabaglar and Murgaš by Jovanovi (1904) that can concern also other species (see Note below). Confirmed occurrence in Bulgaria.
N: Saprophagus, flightless species which is probably much more abundant than the records would indicate but it is secretive in its habitat. Old records from the Balkan peninsula can also concern the species *Ch. binaght* Mariani and *Ch. schatzmyri* Mariani.

Chaetonyx schatzmyri Mariani, 1946
ME: Arasino 1976 - about 30 spec., under a stone in decaying grass of plants; 1977 - 2 spec.; Balovo 1975, 1984 - 1/1 and 0/1, under stones, pasture; Mostovo - 1/1, under stones, deciduous forest; Lozanov 1975 - 1/1, in roots of *Cynernum* sp.
D. G was described from Greek Macedonia - Vardar and B - only one record by Likichev (1959) without precise data. Confirmed occurrence in Bulgaria.
N: see *Ch. robustus* Schaud.

Glyptomydae

Eulalia bicolor (Waltl, 1838)
ME: Vlačun - more spec., on yellow flowers of Asteraceae, clear deciduous forest.
D. J. G. T and B - only one record from Chamant by Kostandâeva-Markova (1959), repeated by Zacharieva (1965b).

Scarabaeidae

Scarcabaeus armeniacus Ménétres, 1832
ME: Romarovo - 1 spec., horse dung, pasture; Dolina Dikanka - 1 spec., sheep dung, pasture; Liljanovo 1986 - 1/1 sheep dung, pasture; Melnik - 0/1.
D. J, T and B - recorded from Ojagjano (the Rodopi Mts.), Kurie, Kustendil and the Golo bardo ridge by Angelov (1965), from the Albotouch Mts. by Cuki (1943), from Dragoman, Pazardzhik and the Albotouch Mts. by Pitton (1940), from the environs of Pazardzhik by Zacharieva (1965) and from the environs of Petriâ by Zacharieva & Dimova (1980).

21
N: All above records were published under the name *S. punctecollis* Latreille which occurs in the western part of the Mediterranean area. *S. armenciaus* Ménestrés was separated as a good species by Zu Strassen (1967) and occurs in the eastern part of the Mediterranean area including the Balkan peninsula.

- *Cheironotus barbadis* (Balkoni, 1870)

D: First record from the Balkan peninsula, Cyprus is the nearest known finding place of this species (Balbashar 1983)

- *Cheironotus ungaricus* (Herbst, 1789)

ME: Lehnica 1987 - 1/3, horse dung, pasture, Szeppol 1971b - 1/0, cow dung, pasture
D: J, G, T and B - recorded from the eastern part of the Rodopi Mts. by Zacharova (1965a), from Medeni Buk (the Rodopi Mts.) by Zacharova & Dimova (1975), from Lozenets by Zacharova et al. (1975) and from the environs of Pecri by Zacharova & Dimova (1980)

- *Caccobius mundus* (Ménestrés, 1838)

ME: Achto 1976 - 15/18, sheep dung, pasture
D: G T. Common species in Turkey reaching the Bulgarian territory along the Black Sea coast.

- *Onthophagus angorenus* Petrovitz, 1962

ME: Kočuch - 1/0, sheep dung, pasture, Kramore - more spec.
D: First record from the Balkan peninsula, according to Binaghi et al. (1969) known only from the locus classicus (Anatolia)

- *Onthophagus ariamentarius* Ménestrés, 1832

ME: Lehnica 1979, 1986 - more spec., sheep, horse and pig dung, mostly on bare pastures
D: J, G, T and B - recorded from Lehnica by Angelov (1965), from the environs of Petrovitz by Zacharova & Dimova (1980) and also by Balbashar (1965) without precise data

- *Onthophagus deliacassius* Pitino & Mariani, 1981

D: A, G (Martin-Piera & Zunino 1986), from Albania recorded also under the name *O. punctatus* Petrovitz by Binaghi et al. (1969)

- *Onthophagus marginalis* Gebier, 1817

ME: Lehnica 1979, 1987 - more spec., sheep and horse dung, humid pastures
D: J, G and B - recorded from Medeni Buk (the Rodopi Mts.) by Zacharova & Dimova (1975) and from the environs of Petrovitz by Zacharova & Dimova (1980)

- *Onthophagus paeceollis* Reitter, 1892

D: A, J, G, T
N: Described by Reitter as a variety of *O. fructicornis* (Preysler) and then once more by Pierotti as *O. schatzmayi* (Müller 1971) Well differentiated from *O. fructicornis* (Preysler) and from *O. simulans* (Scriba) only by Balbashar & Hristov (1960); Old records of *O. fructicornis* (Preysler) from Bulgaria (Nedkalov 1909, Putzoni 1940) can in the fact concern these two closely related species.

- *Onthophagus sericus* Reitter, 1892

ME: Achto 1976 - more spec., Szeppol 1979 - more spec., 1982, 1983 - more spec., sheep and horse dung, pastures mostly xerothermic exposed habitats. The closely related species *O. verticicornis* (Laicharting) occurs here mostly in humid shaded habitats (mostly the vicinity of watering places under trees and shrubs).
D: A, J, G, T and B - recorded from Kostence and Germański monastir by Putzoni (1940) and from the environs of Petrovitz by Zacharova & Dimova (1980) First record from the Bulgarian Black Sea coast.

- *Aphodius (Ammococus) brevis* Erichson, 1948

ME: Mostovo - 1 spec., dry cow dung, shaded habitats near the entrance of the cave Ekipitsi.
Apholdis (Euryus) aequatus A. Schmidt, 1907

ME: Balik - more spec.; at light

D J G (Dellacasa 1973, Krell 1986)

N: Species secretive in its habitat, probably tied with seashore dunes.

* **Apholdis (Burlus) satellitus** (Herbst, 1789)

D J G

* **Apholdis (Lamarus) maculatus** Sturm, 1800

ME: Asenovgrad, Balik, 1975, 1976, 1981; Balik, Dobrostan, 1981, 1984; Galjan Periste, Liljanovo 1979; Manastir, Pampanovo, Peren - all these localities - more spec.; sheep or less horse or deer dung, almost exclusively forested areas or at least shaded habitats; Begovica 1973 - 4 spec.; 1983 - 1 spec.; Kalina - 2 spec.; human faeces; Skorpilovec - 1 spec

D J

* **Apholdis (Phalacronothus) bujavicus** German, 1924

ME: Achtopol, 1976 - 4 spec.; Ajtos 1976 - 1 spec.; 1982 - more spec.; sheep dung or buried in the openings of the burrows of *Catillus catillus* together with other species tied with this habitat (*Orastophagus semeurus* (Panzer) and *D. vitialis* (Fabricius)); Biser - more spec.; sheep or less cow dung; pastures; Damjanica - 2 spec.; General Tolevo - more spec.; at the openings of the burrows of *Catillus catillus* or in sheep dung; pastures; Gorna Orzachovica - more spec.; sheep dung; pastures; Kamceja - more spec.; sheep dung; pastures; Liljanovo 1986 - more spec.; sheep or horse dung, pastures; Melnik - 1 spec.; Szopol 1982, 1983 - more spec.; sheep, horse or less cow dung; pastures, mostly exposed habitats

D J

* **Apholdis (Phalacronothus) cettii* Semenov & Medvedev, 1928

ME: General Tolevo - 300, buried in the openings of the burrows of *Catillus catillus*; pasture at the old Turkish cemetery (for details see by A. rotundadosa Reitter)

D First record from the Balkan peninsula, described from the Ukraine, known also from Austria, Hungary, Moravia, Slovakia and Roumania

N: Almost exclusively tied with the burrows of rodents

* **Apholdis (Phalacronothus) paracrenorustis** Balthasar & Harbant, 1960

ME: Ajtos 1982, Bolarovo, Biser, Debrovo, General Tolevo, Gorna Orzachovica, Lebena 1986, Liljanovo 1986, Szopol 1982, 1983 all these localities - more spec.; mostly sheep, less frequently also horse and cow dung; pastures or forested areas; Arkutino 1977 - 1 spec.; 1983 - 1 spec.; excrement of *Sus scrofa*, deciduous forest; Begovica 1973 - 2 spec.; Gracac - 1/3 human excrement; Izgrev - 1 spec.; Kamceja - 1/3 forest way; Kresta 1979a - 1 spec.; Melnik - 20; Ruse 1/3 human excrement; Trebencek - 2

D G (Korfu Balthasar (1964))

N: Occurrence in the Balkan peninsula hitherto only deficiency known, in Bulgaria this species seems to be very common in the spring. By the authors known also from Cma Gora and Greek Macedonia. Bulgarian records of the closely related species *A (Ph) crenorustis* (Panzer) concern probably this species. (Muehe 1963, 1964; Zacharianova et al., 1975) since *A (Ph) crenorustis* (Panzer) is a West-European element.

* **Apholdis (Melnora) obliteratus** Panzer, 1823

ME: Tremolinica 1986 - 1/3; old horse excrement from last autumn; just on the road

D J G and B - recorded only once from the environs of Petrich by Zacharianova & Dimova (1980)

* **Apholdis (Melnorhys) pibescens** Sturm, 1800

ME: Ajtos 1982, Gorna Orzachovica, Lebena 1986. Vichov - all these localities - more spec.; sheep or horse dung; pastures; Melnik - more spec.; Tremolinica 1986 - 20; fresh horse excrement, on the way

D J G

* **Apholdis (Melnorhys) reni** Reitter, 1892

ME: Biser - about 30 spec.; single horse excrement, shaded humid place; Lebena 1986 - more spec.; horse or less sheep dung; pastures; Liljanovo 1986 - more spec.; single horse excrement just on the road; Tremolinica 1986 -
3/4, horse dung, pasture, Vlacli - 1/0, in flight
D First record from the Balkan peninsula, hitherto known from southwestern and Central Europe but also from Turkey
 * Aphodius (Melanopterus) sphacelatus (Panzer, 1798)
 ME Begovica 1986 - 1/0, in flight at snowdrift, Čepelare 1978 - more spec, Manastir - more spec, horse
dung, pasture, Pančevovo - horse, cow and sheep dung, pastures or also forested areas, Petrija - 3/2, sheep
excrement, coniferous forest, Trešnjevka - 1 spec
D J, G

* Aphodius (Trichonotulus) scofa (Fabricius, 1787)
ME Asenovgrad - 1 spec, dry sheep excrement under stone, pasture, Bačkovo - 1975, 1984 - more spec, sheep
 dung or deer droppings, open pasture or often also wooded areas, Biser, General Gočevo, Gorna Orjahovica,
 Sopot - 1982, 1983 - all these localities - more spec, sheep dung, pastures, Russe - 1 spec, in flight
D J, G

* Aphodius (Orodocus) rotundangulus Reitter, 1900
ME General Gočevo - 1/1, buried in the openings of the burrows of Citellus citellus, pasture at old Turkish
cemetery, together with further species tied with the burrows of small rodents (Ochotonidae, Scincidae, Panter,
O musurus (Fabricius), Aphodius (Plagogenus) patulus (Fourcroy), A (Pedicellinae) semenovii & melodii,
Rusalka - 1/0, dead in spider's web
D First record from the Balkan peninsula, hitherto known from the Ukraine, from Kazakhstan under the name
A hiansom Semenov & Medvedev and A fortunari Reitter (synonymy according to Nikolajev (1987)), from Po
land as A hekskii Roubal according to Delacasa (1991) and from Roumania (Kinca 1982)
N: The species is apparently confined to the burrows of rodents e.g Marmota bobac (Ukraine),
Citellus sibiricus (Poland), Citellus citellus (Roumania)

Aphodius (Eysmus) famagutus Reitter, 1892
ME Sandanski 1979 - 1 spec
D First record from the Balkan peninsula, described from Transcaucasia and also known from Asia Minor (Bal
thasar 1964)

* Aphodius (Eysmus) sculpturalis Reitter, 1892
ME Leblica 1986 - 1 spec, sheep dung, extremely xerothermic pasture with occurrence of Galeodes sp
D First record from the Balkan peninsula, known from Transcaucasia, Syria and Lebanon (Baltsassar 1964)

* Aphodius (Aphodius) frater Mulsant, 1871
ME Kresna 1985 - 7/3, dry cow dung, pasture
D J (Velebit)
N: Species secretive in its habitat, almost exclusively saprophagous

Aphodius (Loraphodius) saurus Fildermann, 1835
ME Černokores - 1 spec, Kamija - 3 spec, in putrefied rests of plants, Lozeniec 1984 - 74 spec, in the camp
ning Oasa, probably attracted by smell of latrines, Tvilenovo - 1 spec
D G, J and B - recorded from Sutlanlar by Horion (1958) and without precise data by Mekic (1959). Confirmed
occurrence in Bulgaria
N: Almost exclusively saprophagous species.

* Aphodius (Agrilinus) borealis Gylenhal, 1827
ME Bačkovo 1974 - 2 spec, sheep excrement, clear deciduous forest, Begovica 1973 - 2 spec, Doup - more
spec, old dry cow dung, coniferous forest, Ljupanovo 1986 - 1 spec, in flight, Manastir - 3 spec, sheep dung,
coniferous forest, Mostovo - more spec, old humus cow excrement, shady habitats near the entrance of the cave
Erikpup
D J, G

* Aphodius (Agrilinus) satyrus Reitter, 1892
ME Randonica, Begovica 1973, 1979, 1983b, Goljani Persenk, Manastir, Pančevovo, Pirin, Petrija - all these
localities - more spec, sheep less cow dung, pastures and forested habitats, in the zone of coniferous forest
frequented species, Tsveto ezero - 2 spec, sheep dung, pasture above the border of coniferous forest zones.
D J (Velebit)
* Aphodius (Agrilinus) vuttatus Say, 1825
ME: Baer - 1 sp., sheep dung, pasture, Leboca 1986 - about 50 sp., sheep dung, pastures
D G (Rhodes, the authors known also from Cyclades)
* Aphodius (Badius) ghardamaensis Bailbasar, 1929
D J, G (Rhodos)

* Aphodius (Liathorax) kraznitz Harold, 1868
ME: Kozhuch - more sp., horse dung, pasture, Sozopol 1972 - 1 sp., Vida - more sp., at light, bank of the river Danube.
D A J, G

Euthephtaulacus sus (Herbst, 1783)
ME: Balkovo 1974, 1975, 1981 - more sp., on soil under dry sheep dung, xerothermic limestone pasture
D J G and B - only one old record from Sofia by Joakimov (1904) Confirmed occurrence in Bulgaria.

Psammodius asper (Fabricius, 1775)
ME: Daskota - more sp., between roots of grasses in fine sand, together with further psammodius species (Psammodius laevirostris Costa, Leoprammodius strunae (Chromý), Rhysinus germanus (Linnanius), bank of the river Luda Kamčja, Leboca 1986 - 3 sp., under dry roots of plants, sandy bank of the river Leboca.
D J and B - recorded only from Krema by Chromý (1983)

Psammodius basalis Mulsant & Rey, 1851
D G and B - recorded only once from the environs of Sozopol (Mencel 1982)

Leoprammodius strunae (Chromý, 1983)
ME: Daskota - 1 sp., between roots of grasses in fine sand, bank of the river Luda Kamčja (see also P. asper (Fabricius), L. laevirostris (Clement); Daskota 1979 - 1 sp., under stone, sandy bank of the river Leboca.
D B - described from basin of the river Struma (Krema, Sanitansko), first recorded from the northern part of Bulgaria.

N: This species is closely related to L. bellus (Pierotti, 1981) which was described from Peloponnese and according to Raković (1996) is possibly identical with him

Pelerophorus pannonicus Petrovitz, 1961
ME: Arkutino 1984 - 1 sp., on flight, seashore dunes, Charmanli 1974 - 1 sp., at light, in the camping south of the town, together with 783 specimens of the similar species P. caesus (Cretzsh), Rogožewo - 6 sp., at light.
D J, G and B - recorded only from Varna by Pituau & Manuzi (1986)

* Maladera apfelbecki Petrovitz, 1969
ME: Leboca 1975 - 1/1, on vegetation, sandy bank of the river Leboca
D A G
N: According to Petrovitz (1969) the species Maladera punctatissima (Faldermann) occurs in Transcaucasia and Anatolia and the records of this species from the Balkan peninsula (e.g. Maksic 1959) concern in the fact M. apfelbecki Petrovitz and two further species described from Greece.

Miletrogus fallax (Marseul, 1879)
ME: Baer - 0/1, dead under stone, clear oak forest, Krusa 1979a - more sp., Melnik - more sp.
D A, J, G and B - recorded only from Belovo (the Rodopi Mt.) and Stalinn [i.e., Varna] by Kanardžieva-Makovi (1955), repeated by Norveiller (1965) and Zachariava & Dronov (1975), without precise data recorded also by Maksic (1959) and Petrovitz (1969) by the former author as questionable.

* Miletrogus gradjeveci Norveiller, 1965
ME: Sozopol 1983 - 1/0, under stone, pasture
D G Hübner known only from locus classicus (Thessaloniki and Port Baklar) (Norveiller 1965, Petrovitz 1969)

Miletrogus pitiales (Gyllenhall in Schönherr, 1817)
ME: Sozopol 1983 - 2/2, on the leaves of Quercus sp., right after the sunset, together with more specimens of M. vernus (German) and Rhysinus germanus (Olivier), sitting on the leaves or flying round
D A, G, J, T and B - according to both the lists of Balkan Scaphaenidae (Mikic 1959, Petrovitz 1969) the occurrence in Bulgaria is questionable, although this species is recorded from Ruse and Sarn planina (Nedzjakov 1905) and from Lakatnik, Sliven, Carabed and the Strnadza planina Mt. by Kantardjoea-Minkova (1953), repeated also by Nonveiller (1959) Confirmed occurrence in Bulgaria

* Amphulallon atacticum (Mannerheim in Hummel, 1825)

ME Batovo - 1/1, Kranovo - 2/1

D G (Panu 1955) and B - recorded from Ekrene [-Kranovo] also by Panu (1955), repeated by Zachanoea (1955b) and from Svidigrad (larvae) by Zachanoea (1955b). According to Mikic (1959) both the records by Panu (1955) are questionable and in the list of Balkan Scaphaenidae (Petrovitz 1969) this species is lacking at all. Confirmed occurrence in Bulgaria and in the Balkan peninsula.

* Amphulallon burmeisteri Brentske, 1886

ME Bažikovo 1984 - 6/1, in flight round the koloty Pyrus sp., after the sunset, Çepelare 1968 - 0/1, Litjanovo 1983 - 0/1, Manastir - 1/0, in flight, after the sunset on the road in the coniferous forest

D J

N: This species was separated from related A assimile (Herbst) only by Nonveiller (1959) on the basis not only of morphological features but also on difference in the time of flight. A assimile (Herbst) seems to be diurnal while A. burmeisteri Brentske nocturnal species. Some of records of A assimile (Herbst) from Bulgaria (Joakimov 1904, Kantardjoea-Minkova 1953, Nedzjakov 1905) probably concern this species.

Polychyilla bory (Brullè, 1832)

ME Sandanski 1973b - 2/0

D J, G and B - only two records without precise data (Mikic 1959, Petrovitz 1969). Confirmed occurrence in Bulgaria

Anosthapa aprica Eriehson, 1847

ME Sozopol 1965 - 1/0, Vodarane - 1/0, on grasses, sandy bank

D G and B recorded from Krazkowo by Zachanoea (1951), from Kazane by Zachanoea (1952) and from the Rodopi Mt. by Zachanoea & Dimova (1975)

* Anosthapa dispar Eriehson, 1847

D J (Medvedev 1949), G

Hopla brunimes Bonelli, 1807

ME Lebma 1975 - 1/1, on grasses in the morning, sandy bank of the river Struma. Sandanski 1971 - 0/1, Sarni Krasna - 0/1, under stone in fine sand, bank of the river Struma

D J, G, T and B - recorded only from Pazardhak by Nedzjakov (1909) under the name H. floratus (Olivier), repeated also by Mikic (1959) and without precise data by Petrovitz (1969). Confirmed occurrence in Bulgaria

* Hopla dulitipes Retit, 1890

ME Arkutino 1984 - 1/0, dead in spider's web, Pernorsklo 1966, 1980 - 1 and 1 spec., Rakovo - 0/1

D J

* Hopla stenolepis Apfelbeck, 1908

ME Krasna 1979a - 6 spec., 1979b - more spec., Lebma 1986 and Staraman - both localities - more spec., on the branches and flowers of Tamariscus sp., the majority of specimens active in the morning at about 9 - 11 a.m., then buried in sand, Skylave - more spec

D A, J

Proponeurus boemocrona (Fallas, 1781)

ME Arkutino 1973 - 1/0, old deciduous forest, in the night on a trunk, Sozopol 1971a - 3/0, Lebma 1988 - 6 larvae and rests of 1 amoeba, in a hollow of Pteranodon orientalis

D J, G (Hellmann 1985, Luttig 1983, Malek 1985, Young 1989) and B - only one record from Pernorsklo (15 vui 1975) by Malek (1985)

N: Relict pontomediterranean species of lowland deciduous native forests worthy of a strong protection.
Gnorimus variabilis (Linnæus, 1758)

ME A. J. G and B - only two old records (from Kazanlak by Nodjalkov (1905) and from Vratsa by Nodjalkov (1909), repeated by Mikšić (1959) and without precise data by Schulze (1965). Confirmed occurrence in Bulgaria.

Pratetia angustata (Germain, 1817)

ME A. J. G and B - only two old records (from Kazanlak by Nodjalkov (1905) and from Vratsa by Nodjalkov (1909), repeated by Mikšić (1959) and without precise data by Schulze (1965). Confirmed occurrence in Bulgaria.

Pratetia nigra (Mulsant, 1842)

ME A. J. G and B - only two old records (from Kazanlak by Nodjalkov (1905) and from Vratsa by Nodjalkov (1909), repeated by Mikšić (1959) and without precise data by Mikšić (1965). Confirmed occurrence in Bulgaria.

N: The all above records were published under the name P. koerzhi bacaemica Mikšić, 1957 which is regarded according to Moreto & Baraud (1982) as a junior synonym of P. nigra (Mulsant).

* Pratetia troyana (Gory, 1933)

ME A. J. G and B - only two old records (from Kazanlak by Nodjalkov (1905) and from Vratsa by Nodjalkov (1909), repeated by Mikšić (1959) and without precise data by Mikšić (1965). Confirmed occurrence in Bulgaria.

REFERENCES

ANGELOV P 1965 Motterflie (Coprinae, Scatophasidae) aus Bulgarien. Nova Tr VPI - Plodav. Biol. 3 95-109 (in Bulgarian, Germ. abstr.)

BALTASAR V 1963 Monographie der Scatophasidae und Aphodiidae der paläarktischen und orientalischen Region Band 1, 2 Praga Puli House Acad Sci, 291 pp, 827 pp

BALTASAR V 1964 Monographie der Scatophasidae und Aphodiidae der paläarktischen und orientalischen Region Band 3 Praga Puli House Acad Sci, 652 pp

BINAGHI G, DELLACASA G & R POGGI 1969 Nuove caratteri per la determinazione degli Ophiopogon del gruppo avani (Le) e genomica controllata delle specie italiane del gruppo Mem Soc Entomol Ital. 48 29-46

CHROMY J 1983 A new Psammodias Fallon species from Europe belonging to the subgenus Leopodiasmodius Rakoš Balopera, Scatophasidae Acta Entomol Bohemoslov 80 210-214

DELLACASA G 1973 Una rara specie di Aphodius mediterraneo orientale turacca, nuova per l'Italia Aphodius (Euryn) acqualis A Schmin (Colopera, Aphodiidae) Boll Soc Entomol Ital 105 85-88

DELLACASA M 1991 Contribution a un world-wide catalogue of Aegaliidae, Aphodiidae, Autononidae, Termiotroglidae (Coleoptera, Scatophasidae) Addenda et corrigenda Mem Soc Entomol Ital 70 3-57

GOTTWALD J 1966 Neue und interessante Funde der Käfer aus der Tschechoslowakei (Col.) Acta Entomol Bohemoslov 63 165-169 (in Czech, Germ. abstr.)

HELLMANN V 1985 Weitere Funde von Propomaenus hirsutus Pallas, 1781 in Osterreichland (Coleoptera, Scatophasidae) Entomol. Zeitschrift 95 63-64

HORION A 1958 Faunistik der mittelmeurischen Käfer. 6 - Lamellicornis Überlingen-Bodensee A Feyer Verlag, 343 pp
BUTEO

Ornitologický časopis zaměřený na problematiku výzkumu a ochrany dravců a sov. Vychází český a slovensky se souhrny v angličtině.

An ornithological journal devoted to raptors and owls research and protection. In Czech and Slovak with English summaries.

MIMOŘADNÁ NABÍDKA/SPECIAL OFFER

Každý svazek obsahuje podrobnou zprávu o činnosti Skupiny pro výzkum a ochranu dravců a sov v Československu.
Each volume contains a report on the activities of the Group for research and protection of raptors and owls in Czechoslovakia.

Z dalšího obsahu; From other contents;

Orl mořský na Třeboňsku. White-tailed Eagle in the Třeboň region.
Určování věku mláďat dravců. Aging nestling raptors.

Zájem početnost dravců. Winter abundance of raptors.
Zimování kaštanovýka, určování věku a pohlaví. Wintering of Rough-legged Buzzard, sexing and aging.
Sup bílohlavý a sup mrechozrout. Egyptian Vulture and Griffon Vulture.

Orl stepni v ČSR. Steppe Eagle in CSFR.
Kalichek nejmenší na Slovensku. Pygmy Owl in Slovakia.
Výsledek naladění na Slovensku. Scoops Owl in Slovakia.
Potrava ptáků obecného. Diet of the Tawny Owl.

Č. 5 (1990), cena 34,- KČS Zahraniční zpětná hlušení Vol. 5 (1990), price $3,- Ringing recoveries of birds of knoužkováných dravců a sov. of prey.
Výzkum orla křiklavého v Československé. Research on the Lesser Spotted Eagle in CSFR.
Dvě mláďata orla křiklavého. Two fledglings of the Lesser Spotted Eagle.
Abnormální ve smíšených dravcích a sov. Abnormalities in raptor clutches.

Objednávky přijímá (order from): NATURE, Tomáš Diviš, Tyršova 698, 552 03 Česká Skalice, Czech Republic.
Trematodes of the common cormorant (Phalacrocorax carbo) in Czech Republic

Vanda NAŠINCOVÁ, František MORAVEC & Tomáš SCHOLZ

Institute of Parasitology, Academy of Sciences of the Czech Republic
Brezovská 31, CZ-370 05 České Budějovice, Czech Republic

Received November 17, 1992, accepted February 17, 1993
Published June 25, 1993

Cormorant, Trematoda, parasites, distribution, Czech Republic

Abstract. The present paper comprises a systematic survey of trematodes collected from 101 common cormorants, Phalacrocorax carbo (L.), in South Bohemia and South Moravia, Czech Republic, in 1987-1992. The following eleven species were recorded: Petasiger excrescens, P. phalacrocoracis, Parphysterostomum radiatum, Metorchis salthorum, Heterophyes aequalis, Apophallus meehlii, Calocotostomum lacteum, Cercarioides aharoni, Phagocola longa, Heterophasma dubia and Hysteromorpha triloba. The species H. aequalis, C. lacteum, P. excrescens and H. dubia are new reported for the first time from Central Europe. The common cormorant represents a new definitive host for heterophyid trematodes C. aharoni. Most trematode species found are briefly described and illustrated and some problems concerning their taxonomy, hosts and geographical distribution are discussed.

INTRODUCTION

Data concerning the helminth fauna of cormorants (Phalacrocorax carbo (L.)) from the region of former Czechoslovakia are rather scarce. Small numbers of these fish-eating birds were examined by Vojtechovská-Mayerová (1952) and Ryšáv (1958) from one locality (Podunajské Biskupice) in southern Slovakia and only recently Moravec et al. (1988) and Moravec (1990) reported on the results of helminthological examinations of a few cormorants originating from South Bohemia and South Moravia. Only three species of trematodes, Parphysterostomum radiatum, Petasiger phalacrocoracis (see Našincová et al., 1993a) and Hysteromorpha triloba, were recorded by the above mentioned authors.

In 1987-1992, during studies on the helminth parasites of cormorants, carried out by the Institute of Parasitology, ASCR, in České Budějovice, a total of one hundred and one cormorants were examined from South Bohemian and South Moravian localities. In them, in addition to other parasites, eleven species of trematodes were recorded. Since some of them are inadequately known or were not previously recorded from then Czechoslovakia or even from Europe, their taxonomic evaluation is the subject of this paper.

MATERIALS AND METHODS

A total of 101 common cormorants, Phalacrocorax carbo (L.), from several localities on South Bohemia and South Moravia were helminthologically examined between 1987 and 1992. The trematodes found were fixed under slight pressure with 70% ethanol; after staining with borax carmine, they were dehydrated in an ethanol series and mounted in Canada balsam. Drawings were made with the aid of a Carl Zeiss drawing attachment. All measurements are in μm unless otherwise stated. Reference specimens are deposited in the helminthological collection of the Institute of Parasitology, Academy of Sciences of Czech Republic (ASCR), in České Budějovice.
SURVEY OF SPECIES

Family Echinostomatiidae Loos, 1902

1. _Petasiger exceretus_ Dietz, 1909
 Syn.: _Petasiger taschikovi_ Abbasov et Ikmanov, 1959
 Site: posterior part of small intestine.
 Comments: The species has been dealt with in a separate paper by Našincová et al. (1993a). It has been found relatively rarely in cormorants from two South Moravian localities only. The intensity of infection was also rather low, ranging from 1 to 14 specimens in a bird.

2. _Petasiger phalacrocoracis_ (Yamaguti, 1939)
 Syn.: _Echinocotylus phalacrocoracis_ Yamaguti, 1939; _Petasiger hospital_ (Mendheim, 1940); _P. exceretus_ auctorum, n. nov. Dietz, 1909.
 Site: anterior part of small intestine.
 Comments: The morphology of this species, that has erroneously been designated in the literature as _P. exceretus_, as well as the differential diagnosis of _Petasiger_ species parasitizing cormorants are described in a paper by Našincová et al. (1993a). This species is a very frequent parasite of the common cormorant in all localities studied and it occurs even in rather young birds. In most localities, the prevalence was considerably high, reaching often almost 100% (Ženích pond, Jarošovice, Nové Mlýny water reservoir). The intensity of infection was also very high (several hundreds of specimens).

3. _Paryphostomum radiatum_ (Dujardin, 1845)
 Syn.: _Echinocotylus arenicolus_ Johnston, 1917; _Paryphostomum phalacrocoracis_ Gosse, 1941.
 Site: posterior part of small intestine.
 Comments: The morphology of developmental stages of this trematode, including that of adult worms from cormorants, is described in detail in a separate paper by Našincová et al. (1993b). This species is a rather common parasite of the common cormorant both in South Bohemian and South Moravian localities. The prevalence was remarkably high in some localities (Staré jezero near Chlum u Třeboně, ponds around Pohořelic, pond Prostřední near Lednice), where its value reached 100%; the intensity of infection was rather high as well, with maximum values (from 85 to 210) in South Moravia.

Family Opisthorchiidae Braun, 1901

4. _Metorchis xanthozonus_ (Creplin, 1846) Fig. 1 A
 Syn.: _Metorchis pinguiscula_ Skrjab., 1913; _M. intermedius_ Heimermann, 1937.
Fig. 1. A - *Metorchis zamboanus* (Creplin, 1846); B - *Heterophyes anqualis* Looss, 1902; C - *Apophalus murchioldi* (Jagerskiold, 1839).
extremity. Acetabulum situated near middle of body, usually being somewhat pre-equatorial, slightly smaller than oral sucker, measuring 130-260 x 155-235 (192 x 205) T estes diagonal, round or somewhat lobed, close to posterior extremity, anterior testis measuring 98-284 x 113-378 (208 x 271), posterior one 158-315 x 225-390 (237 x 311) Seminal vesicle tubular. Genital pore just in front of acetabulum. Ovary spherical, median or submedian, protesticular, size 80-170 x 100-178 (111 x 126). Uterus winding forward from ovary approximately to level of anterior end o f vitellaria. Eggs numerous, oval, size 25-30 x 13-15 (27 x 14). Vitellaria extending in lateral fields from ovarian zone to beyond acetabulum, reaching approximately level of intestinal bifurcation.

Site: gall-bladder.

Comments. The taxonomy of Metorchis species parasitizing birds in Europe is rather confused, this being mainly due to a considerable morphological variability of adult trematodes of this genus. Odening (1962) synonymized the species M. crassusculus (Rudolphi, 1809), M. xanthosomus (Creplin, 1846), M. pingunicola Skrjabin, 1913, M. intermedias Heinemann, 1937 and M. coerulescens Braung, 1902 with Metorchis bilis (Braung, 1790), but Vojtek (1981) and some other authors do not consider this synonymy to be well founded without knowledge of the life-cycles. The specimens of the present material exhibit a high degree of morphological variability, concerning mainly the shape of the body, the position and shape of the testes and the ovary, the position of the acetabulum and other features. By their morphology they resemble Metorchis xanthosomus and M. intermedias, the two species considered by Bykhowskaya-Pavlovskaya & Kulakova in Bauer (1987) to be identical, since the trematodes of the genus Metorchis recorded from European corvids were also identified earlier either as M. xanthosomus or as M. intermedias (see e.g., Bykhowskaya-Pavlovskaya, 1962, Vyshkvarseva, 1969, Yamaguti, 1971), we consider our specimens to belong to M. xanthosomus (syn M. intermedias). According to Bykhowskaya-Pavlovskaya & Kulakova in Bauer (1987), M. xanthosomus (Creplin, 1846) is parasitic in water birds, largely fish-eating birds, whereas M. bilis Braung, 1790 (syn M. albidas (Braung, 1898)) is a parasite of predatory and carnivorous mammals.

In the Czechoslovakia, M. xanthosomus (including its synonyms M. intermedias and M. pingunicola) has been reported only from Fulica atra from South Moravia and Slovakia (Vojtek & Vojtova, 1961; Macko, 1969; Babicka & Vojtek, 1972), also the trematodes reported as M. bilis from Anas pratensis from southern Slovakia (Macko, 1974) may be conspecific with M. xanthosomus. No Metorchis species were reported earlier from corvids in Czechoslovakia (Vojtek, 1981). The present findings show that in the localities under study M. xanthosomus is one of the less frequent helminth parasites of corvids, the prevalence in adult corvids from individual localities ranged from 8-33%, with the intensity being 1-9 (mean 3) trematodes per bird.

The only first intermediate host of this trematode is the prosobranch snail Bulinus tenaculata (Heinemann, 1937, Vyshkvarseva, 1969; Vojtek, 1974, 1976), while the second intermediate host are various fishes of the families Cyprinidae and Cobitidae (Heinemann, 1937; Vyshkvarseva, 1969, Yamaguti, 1975, Bykhowskaya-Pavlovskaya & Kulakova in Bauer 1987). Vojtek (1981) considers Corvus taxina to be the only second intermediate host of M. intermedias (= M. xanthosomus) in former Czechoslovakia, larval stages of this trematode species (reported as M. intermedias), cercariae from B tenaculata and metacercariae from C. taenia, have so far been reported by Vojtek (1961, 1974, 1976) and Par & Vojtek (1972) from southern Slovakia. The metacercariae of M. xanthosomus are found in thick-walled spherical cysts located in the musculature and gills of infected fishes (Yamaguti, 1975, Bykhowskaya-Pavlovskaya & Kulako-
Family Heterophyidae Odhner, 1914

5 *Heterophyes aequulis* Looss, 1902 Fig 1B

DESCRIPTION (10 specimens) Small sized trematodes, 447-672 (545) long and 170-233 (197) wide. Body surface covered with tegumental spines. Oral sucker subterminal, measuring 33-45 x 43-56 (41 x 49). Prepharynx present, relatively long, only slightly shorter than oesophagus; pharynx oval, 30-38 x 22-32 (33 x 28) in size. Ceca reaching posteriorly to level of anterior margin of testes. Ventral sucker slightly preocular, measuring 49-65 x 52-63 (56 x 58). Genital sucker lying obliquely behind acetabulum, armed with 17-28 small spines arranged in incomplete circle. Size of genital sucker 37-52 x 38-60 (40 x 44). Testes oval, situated symmetrically near posterior extremity, size of left testis 52-100 x 30-70 (79 x 54), that of right testis 60-107 x 45-75 (81 x 58). Seminal vesicle large, bent toward genital sucker. Ovary pretesticular, measuring 40-60 x 37-54 (49-46). Vitellaria situated between ovary and posterior margin of testes, grouped into about 12-16 follicles. Uterus formed by several loops lying mostly intraceleally and postequatorially. Eggs oval, measuring 20-23 x 13-15 (22 x 14). Excretory bladder I-shaped.

Site posterior part of small intestine.

COMMENTS The morphology of trematodes from the common cormorant clearly indicates that they belong to the genus *Heterophyes* Colbohld, 1866. The trematodes studied are typical, among others, by small number of spines on the genital sucker (17-28), ceca reaching posteriorly only near anterior margin of testes, and small body. On the basis of these characteristics, the trematodes under study well correspond to the species diagnosis of *H. aequulis* as given by Morozov (1952), Reimer (1969) and Taraschewski (1984).

H. aequulis adults have hitherto been found in carnivores (domestic cat, dog) and predatory or fish-eating birds (*Milvus aegyptiacus, Pelecanus onocrotalus, Larus ridibundus, Chlidonias leucopterus*) from Tunisia, Egypt, Israel, Saudi Arabia and Azerbaijan (Morozov, 1952; Yamaguti, 1971, Taraschewski & Nicoladou, 1987). Reimer (1969) found this trematode species in the common cormorant from the former East Germany. On the basis of feeding experiments with 16 potential mammalian and bird definitive hosts, Taraschewski (1985) concluded that *H. aequulis* has a relatively wide range of hosts. According to Taraschewski (1987), human infections with this heterophyid trematode are very probable.

Recent findings of *H. aequulis* larval stages in the mud snail, *Pirenella conica* (family Potamididae), published by Taraschewski & Nicoladou (1987), give evidence about the current occurrence and development of this trematode in Europe. Consequently, the present record of *H. aequulis* adults in South Moravia, together with previous report of its occurrence in East Germany by Reimer (1969), confirm this fact. Nevertheless, the life cycle of *H. aequulis* can hardly be completed in Central Europe, because the first intermediate host, the snail *Pirenella conica*, is euryhaline and it seems to occur in Europe only in a limited number of localities of the Mediterranean coast, mainly in Greece (Taraschewski & Nicoladou, 1987). It can be supposed that the cormorant, harbouring *H. aequulis* trematodes, became infected outside of Czechoslovakia or even outside Europe.

Taraschewski (1987) stated that *H. aequulis* preferred posterior part of the small intestine (ileum, posterior jejunum) as the site of its localization in the definitive hosts. *H. aequulis* trematodes found in the common cormorant from South Moravia were also localized in posterior part of the small intestine.

In the present study, only one cormorant was found to harbour this species (intensity of
6. *Apophalus muehlingi* (Jagerskíjed, 1899) Fig. 1 C

Syn.: Monorchus oesophagolongus Kasurada, 1916.

DESCRIPTION (5 specimens): Body elongate, 1136-1984 (1395) long and 284-378 (330) wide. Body surface covered with spines, larger anteriorly. Oral sucker nearly terminal, 45-55 (50) x 53-68 (59) in diameter. Pharynx short; pharynx measuring 43-50 (46) x 35-50 (44). Oesophagus considerably long; caeca reaching posterior extremity. Ventral sucker muscular, only slightly modified; size of sucker 50-75 (61) x 53-77 (64). Genital pore lying close to anterior margin of acetabulum; genital atrium formed by two unarmed semispherical papillae (gonotyl). Testes large, slightly oblique, located near posterior extremity; size of anterior testis 78-164 (139) x 103-214 (157), that of posterior one 103-175 (144) x 103-190 (157). Seminal vesicle strongly curved, two-chambered; proximal chamber elongate, distal oval. Ovary rounded, submedian, pretesticular; its size 75-108 x 90-132 (90 x 119). Seminal receptacle transversely elongate, lying between ovary and anterior testis. Vitelline follicles numerous, situated laterally between ventral sucker and ovary, filling almost entire testicular region of body and forming large group of follicles near posterior extremity. Uterus tubular, filled with eggs measuring 37-40 (38) x 17-21 (19).

Sise: posterior part of small intestine.

COMMENTS: The specimens from the common cormorant correspond well in their morphology to those of *A. muehlingi* described, e.g., in papers by Morozov (1952), Vojtek (1959) and Bykovskaya-Pavlovskaya (1962). This trematode species is a common parasite of mammals (dogs, cats) and particularly of predatory or fish-eating birds of the orders Pelecaniformes, Lariformes, Charadriiformes and Falconiformes, including cormorants in Europe and Asia (Morozov, 1952; Yamaguti, 1971). The common cormorant, *Phalacrocorax carbo*, has also been reported as the definitive host of *A. muehlingi* in the USSR and Yugoslavia (Serbia) Bykovskaya-Pavlovskaya, 1962; Kilkaroly & Tafro, 1988). Metacercariae of this trematode encysted in the flesh and fins of fish, especially in cyprinids (e.g. in Abranis brama, Bleco bojerka, Rutillus rutillus, Scardinius erythrophthalmus, Rhodeus sericeus) (Morozov, 1952; Yamaguti, 1975).

In former Czechoslovakia, *A. muehlingi* adults were recorded from *Larus ridibundus* and *Siera hirundo* from South Bohemia, Moravia and Slovakia (Vojtek, 1959; Vojtek & Vojtková 1961; Zajíček & Pův, 1961; Pův & Zajíček, 1963; Macko, 1964; Sítko, 1968; Buště et al., 1985; Buště & Grosch, 1986); metacercariae of this parasite were found in 14 species of cyprinid fish in South Moravia and Slovakia (Vojtek, 1981). The present finding is the first report of *A. muehlingi* from cormorants in the region of former Czechoslovakia.

The species was found to be an infrequent parasite of cormorants in South Moravia.

7. *Galactosomum lacteum* (Jagerskíjed, 1986) Fig. 2 A, B

Syn.: Monorchus lacteum Jagerskíjed, 1896.

DESCRIPTION (2 specimens): Body elongate, slender, 2.72-3.07 long and 0.33-0.40 wide, divided into somewhat narrower forebody and wider hindbody. Constriction between fore- and hindbody slightly pronounced, lying in front of ventrogenital sac. Oral sucker subterminal, 175-214 x 158-175 in size. Pharynx present, longer than pharynx; size of pharynx 100 x 75. Gut bifurcating near immediately behind pharynx so that oesophagus almost absent. Behind bifurcation, caeca first directed anteriorly and then bent backwards, thus forming distinct arch; posteriorly, caeca reaching near to posterior extremity. Ventrogenital sac relatively small, median, situated...
1. 2. A, B - Galactostomum lacteum (Jagerskiöld, 1896) (A - general view, B - ventrogenital complex: c - gonostyl, lp - lateral pocket, m - mouth of ventrogenital sac, vs - ventral sucker, sv - seminal vesicle); C, D - Crusides abaroni Wittenberg, 1929 (C - general view, D - ventrogenital complex).
near border of first and second thirds of body. Ventral sucker small, asymmetric, unsucker-like, measuring 77-103 x 54-75; provided with anterior lobes armed with uninterrupted field of small spines up to 5 long. Lateral pocket present, rather large. Gonotyl relatively large, unarmed. Seminal vesicle large, overlapped by eggs. Ejaculatory duct relatively short and narrow. Testes oval, almost tandem (slightly oblique); size of anterior testis 232 x 234; that of posterior testis 284 x 284. Ovary nearly equatorial, submedian, measuring 245 x 265. Vitellaria forming several (about 8) rosettes; most of them situated behind posterior testis. Uterus strongly coiled, forming numerous loops and filling two posterior thirds of body. Eggs measuring 22-24 x 11.5-13.

Site: anterior and middle part of small intestine.

Comments: The specimens from the common cormorant were partly destroyed, probably due to their quick decomposition in the host's intestine after the death of the bird. Consequently, only two specimens were measurable and some morphological characteristics were hardly observable. However, the gross morphology and particularly the structure of the ventrogenital complex clearly suggest that the specimens belong to the genus *Galactosomum* Looss, 1899, and fall in the group comprising *G. lacteum* (Jagerskiöld, 1896) and *G. phalacrocoracis* Yamaguti, 1939 as defined by Pearson (1973).

The classification of the *Galactosomum* species had been based mainly on the body shape, the position of caecal bifurcation and genital organs (testes, ventrogenital complex, vitellaria), the presence of oesophagus, etc. (see Morozov, 1952) until Pearson (1973) published a comprehensive revision of this genus. This author based his classification particularly on the structure of the ventrogenital complex, the study of which had previously been overlooked.

According to Pearson (1973), members of *G. lacteum* group are characterized mainly by the ventrogenital sac opening well behind the intestinal bifurcation and ventral sucker being asymmetric, highly modified (unsucker-like) with a spined knob (lobe) and an invariable spiny cavity. Other features, typifying members of this group, i.e., two-chambered seminal vesicle and a long excretory vesicle, could not be observed, because the proximal part of the seminal vesicle as well as the excretory vesicle were completely overlapped by numerous eggs.

The specimens under study can be distinguished from *G. phalacrocoracis* as described by Yamaguti (1939) and Pearson (1973), on the basis of the following morphological characteristics (see Pearson et al., 1978): (i) there are no prominent radial fibres arising from the wall of the ventrogenital sac; (ii) there is no bundle of muscle fibres running from the gonotyl to the posterior lip of the mouth of the ventrogenital sac; (iii) spines on the ventral sucker are not distinctly separated into two groups; (iv) vitelline follicles do not extend anterior to ovary. Consequently, the specimens found in the common cormorant from South Moravia are designated as *G. lacteum*.

Adults of *G. lacteum* have been reported from *Phalacrocorax carbo* in Norway and Wales, from *P. carbo maroccanus* in Morocco, *P. aristotelis* in Crimea, *Ardea cinerea* in Great Britain, *Sterna hirundo* and *Hydropogone nothografa* in the Black Sea metacercariae are found encysted in marine fish (*Gobius scarpus*, *C. bubalis*, *Smarsis chirensis*, *Anis trichranta*, *Blenius sp.*, *Gadus morlanus*, *Aesopis sturio*, *Bohlius macrostoma*, *Trachinus draco*, *Trachurus trachurus*, *Uranoscopus scaber*, *Scorpaena porcus*) in Sweden, Scotland and the Black Sea in the then USSR. The present finding represents the first record of *G. lacteum* in Central Europe.

Ten *G. lacteum* specimens were found in the only one cormorant.

8. *Cercarionides chravesi* Witenberg, 1929 Fig. 2 C, D

Description (1 specimen): Body 5240 long, divided into pyriform forebody, measuring 1920 x
1210, and elongate hindbody, 3320 x 930 in size; ratio forebody: hindbody 0.58 : 1. Oral sucker subterminal, 410 long and 536 wide. Prepharynx and oesophagus shorter than pharynx; size of pharynx 202 x 164. Ceca arched behind bifurcation, reaching posteriorly near body extremity. Ventrogonadal complex small, median, near junction of fore- and hindbody. Ventral sucker circular, measuring 196 x 145, its cavity armed posteriorly with three sclerotized knobs and large spines in lunate group laterally and anteriorly. Testes slightly lobed, diagonal, measuring 485 x 441 (anterior) and 554 x 441 (posterior). Seminal vesicle thin-walled, bipartite, with smaller proximal and much larger distal parts. Ovary rounded, pretesticular, diameter of ovary 296 x 266. Vitellogenic follicles extending from anterior margin of testis to posterior extremity, localized intraseptally. Uterus tubular, filling large space of posterior part of hindbody. Eggs oval, measuring 47-51 x 22-24 (average 49 x 23).
Sic! close.

COMMENTS: The specimen from P. carbo well corresponds in its morphology to that of C. aharoni specimens redescribed by Pearson & Prévol (1985). Their mutual comparison indicates that the specimen studied is considerably larger than Witenberg's specimen (holotype) of C. aharoni from Puffinus kahli kahli in Israel as well as comparative material from Butorides striatus in Malaysia; however, it is smaller than specimens found in gulls (Larus argentatus and L. novaehollandiae) from Far East and Australia, respectively (Pearson & Prévol, 1985).

In then Czechoslovakia, C. aharoni was reported by Sitko (1988) from Sterna hirundo in Nová Ves near Pohořelice, South Moravia (under the name C. aharoni sict!) and from Larus ridibundus and Sterna hirundo in Klce near Lomnice nad Lužicí, South Bohemia by Bušta et al. (1985) and Bušta & Groschaft (1986). South Moravian locality is very close to the Nové Mlýny water reservoir, where the specimen studied was found. Both the specimens are morphologically rather similar, differing only in size of eggs: 47-51 x 22-24 mm in the specimen of the present material while only 38.2 x 21.5 mm in Sitko's specimen. However, the eggs of C. aharoni are considerably variable in their size and, according to Pearson & Prévol (1985), their length ranges from 36 to 55 mm and width from 18 to 32 mm.

The species C. aharoni has hitherto been found in Puffinus kahli kahli (type host), Sterna hirundo, S. sandvicensis, Hydroprogne techegrave (= H. caspia), Larus argentatus, L. crassirostris, L. genei, L. ichthyaetus, L. minutus, L. novaehollandiae, L. ridibundus, L. schistogaster, Butorides striatus, Egretta dimorpha, Anser anser domesticus and Sturnus vulgaris from Israel (type locality), Mozambique, Poland, Czechoslovakia, then USSR (Black Sea, Dniestr and Amur Rivers), China, Southeast Asia, and Australia (Pearson & Prévol, 1985). Consequently, the common eURRENT, Phalacrocorax carbo, represents a new host of this parasite.

A single specimen of this species was found in one eormant.

9. Phagiscola (Metascocotatae) longus (Ranson, 1920) Fig. 3A
Fig. 3. A - Phagocole (Mesascorophio) longus (Ransom, 1920); B - Holostephanus dabinini Vojek et Vojtková, 1988; C - Hysteromorpha triloba (Rudolphi, 1819).
Seminal receptacle large, median and oblique to ovary. Vitrine glands consisting of about 5 follicles on each side. Uterus tubular, forming several loops filling hindbody. Eggs oval, measuring 17-18.5 (17.6) x 9-12 (10.7).

Site: anterior part of small intestine.

Comments: The trematodes under study, characterized mainly by the presence of a conical appendix at the oral sucker and a single row of circumoral spines, clearly belong to the genus Phagicocla Faust, 1920 (subgenus Metacoscoby Curea, 1933 sensu Yamaguti, 1971). Other morphological features such as long caeca reaching to the level of testes, vitrine glands composed of low number (only 5 on each side) of well separated follicles, and circumoral spines measuring 15-19 m in length, indicated the appurenace of these trematodes to the species *P. longus* as described and illustrated by Morozov (1952), Hutton & Sogandares-Bernal (1958), Reimer (1969) and Retsche & Werding (1978). This widely distributed species has been found in carnivores (domestic cat, dog, Canis lupus, Vulpes lagopus, Lutra) and birds (Milvus migrans, Pelecanus occidentalis californicus, Casmerodium albus egretta, Sula leucogaster, Leucophaeus phalaena) from America (Alaska, Panama, Columbia), Israel, Greece, Roumania and Georgia. Reimer (1969) reported the occurrence of this trematode in the common corvartant, *Phalacrocorax carbo sinensis*, from northern coast of the former East Germany. Metacercaiae of *P. longus* have been reported from the heart, comas arteriosus, pericardium, rarely from muscles of fish of the genera Mugil (*M. cephalus, M. curena, M. iridenon*), Lichia and Barbus (Morozov, 1952; Yamaguti, 1971, 1975; Retsche & Werding, 1978).

The present finding is the first report of *P. longus* from Central Europe.

Family Cyathocotylidae Poche, 1925

10. *Holostephanus dubinini* Vojeck et Vojtkova, 1968. Fig. 3 B

Description (10 specimens): Body pear-shaped, 976-1472 (1253) long and 672-1152 wide, with maximum width at its anterior third. Anterior third of body covered with fine spines. Body surface with ventral pouch containing enclosed holdfast with central cavity, about 40-50 (47) in diameter. Small, round oral sucker subterminal, 107-155 x 130-183 (132 x 151) in size. Prepharynx absent. Oval muscular pharynx well developed, measuring 78-113 x 75-107 (90 x 89). Oesophagus absent. Intestinal caeca extending posteriorly to level of posterior end of vitellaria. Acetabulum smaller than oral sucker, size 63-83 x 73-107 (72 x 89), situated near intestinal bifurcation. Testes large, irregularly oval, diagonal in position; anterior (left) testis measuring 302-432 x 158-283 (390 x 230), posterior (right) testis 315-480 x 189-304 (373 x 238). Ovary oval, size 138-220 x 100-240 (168 x 154), situated anteriorly to posterior testis. Cirrus sac approximately at same level as anterior testis, usually overlapping latter partly in ventral view; cirrus sac 504-790 (623) long and 126-189 (152) wide. Cirrus thin and long. Vitrine follicles extending from level of intestinal bifurcation to posterior margin of testes. Only small number of eggs present in uterus. Eggs oval, size 95-105 x 65-83 (101 x 75).

Site: intestine (small intestine, less often large intestine).

Comments: By their morphology and measurements the present trematodes seem to be practically identical with those described by Vojeck & Vojtkova (1968) as *Holostephanus dubinini* from experimentally and naturally infected corvartants from the Volga R. delta in Astrakhan, Russia. Since also the host species (*Phalacrocorax carbo*) is identical, we consider our specimens to belong to this species.

Holostephanus dubinini has so far been recorded only from the Volga R. delta in Russia.
According to Vožtek & Vožković (1968), all the trematodes designated by various authors (e.g., Nikolaïskaya, 1939; Dubínský & Dubínská, 1940) as *Cyathocotyle prussica* Mathieu, 1896 and parasitizing coronants in the Volga R. delta were undoubtedly conspecific with *H. dubium*; however, this does not concern *C. prussica* from other bird hosts of this region. The present finding represents the first record of *H. dubium* from Czech countries as well as from Central Europe. In his diploma work, Musilová (1991) has reported a specimen of *Cyathocotyle sp.* from a coronant (*P. carbo*) collected in South Moravia, which undoubtedly belongs to *H. dubium* too. While *H. dubium* has not hitherto been recorded from coronants in South Bohemia, it was rather frequent in those coming from South Moravian localities (e.g., in the Nové Mlýny reservoir, the prevalence in adult coronants 44%, intensity 1-30 (mean 7) trematodes per bird).

According to Vožtek & Vožković (1968), the first intermediate host of *H. dubium* is the prosobranch snail *Bithynia tentaculata* while various cyprinid fishes (*Rutilus rutilus, Abramis brama, Leuciscus dace*, *Gobio gobio*, *Tinca tinca* and others) serve as its second intermediate hosts, the encysted metacercariae of *H. dubium* are found in gills and muscles.

Family Diplostommatidae Poincer, 1886

11. *Hysteromorpha trilobata* (Rudolphi, 1819). Fig. 3 C

Syn.: *Helodermum masculicola* Waldenfels, 1860, *Diplostomum cortes* Hughes, 1929, *Cercaria masculicola*

Site small intestine.

Comments: The morphology and measurements of specimens of the present material correspond, more or less, to the descriptions of *Hysteromorpha trilobata* given by Cauren (1930) and Dubois (1970).

This species was originally described by Rudolphi (1819) from *Phalacrocorax carbo* in Europe. At present it is known to occur in various birds of the orders Pelecaniformes, less frequently of Ciconiiformes, Charadriiformes and Colymbiformes, in Europe, Asia, North and South America and Australia. According to Sudakova (1960), *H. trilobata* appears to be an obligate parasite of coronants and, therefore, its frequent records from birds belonging to other orders make doubts. The following species and subspecies of coronants are known to harbour
this parasite Phalacrocorax carbo (type host), P. australis, P. carbo hannah, P. c. novae-hollandiae, P. fusescens, P. melanoleucus, P. olivaceus, P. o. mexicanus, P. pygmaeus, and P. sulcirostris (see Sudarkov, 1960).

In Europe, Hysterocephalus triobus has been recorded mainly from Phalacrocorax carbo (Austria, Switzerland, Roumania, Serbia, Czechoslovakia, Russia), but also from P. pygmaeus (Roumania) (e.g., Ciurea, 1930; Ryšavý, 1958, Sudarkov, 1960, Bykovskaya-Pavlovskaia, 1962; Kiskaroly & Tafro, 1988; Moravec et al., 1988). It seems to be a very frequent parasite of coromants for example in the large river deltas (e.g., Danube, Dneiper, Volga). According to Nikolovskaya (1937), the prevalence of H. triobus in adult coromants from the Volga R. delta was 51%; the mean intensity of H. triobus infection in coromants of the same area was 18-19 (maximum 79) tretmatodes per bird (Dubinna & Dubinn, 1940). The present data show that also in Czechoslovakia H. triobus is one of the most common helminth parasites of coromants; for example, in the Nové Mýtny reservoir in South Moravia, 60% of adult coromants were infected with the intensity being 1-62 (mean 21) tretmatodes per bird; H. triobus was frequently recorded also from other localities from where only a small number of adult coromants were examined.

In former Czechoslovakia, adults of this trematode species were first recorded from Phalacrocorax carbo from the then nesting colony of coromants near the village of Podunajské Biskupice in southern Slovakia by Ryšavý (1958) who had considered them to represent a new species, Parastrigea slovenica; this was later synonymized, in our opinion quite correctly, with H. triobus by Dubinna (1961). From Czech countries it was reported from P. carbo from South Bohemia by Moravec et al. (1968) and Musilová (1991).

The first intermediate host of H. triobus are known to be aquatic snails of the genus Gyraulus (Som, 1980), while the second intermediate hosts are fishes of different families, mainly eels, occasionally also frogs and toad tadpoles. The encysted metacercariae of H. triobus are found largely in dorsal and abdominal muscles, less often under the skin. In Czechoslovakia, H. triobus metacercariae were reported by Vojtek & Vojtková (1971), Pár & Vojtek (1972) and Vojtek (1981) from the eel species Alosa salmonea, A. barbus, A. sarda, Blicca björkna and Rutulus rutulus from south-western Slovakia.

Acknowledgements

The authors are indebted to Ing. Ondra. State Fishery Polohová, and Mr. J. Schönbaumer, State Fishery Tisboš for providing coromants. Thanks are also due to Mr. J. Borovka, Mrs. J. Housková and M. Valečková Institute of Parasitology, for their technical assistance. Critical comments of Dr. J. Sitko, Regional Museum, Pískové are also greatly appreciated.

REFERENCES

DUBOIS G 1951 Sur la position systématique ou la validité de quelques Stigmacola Ann Parasitol Hum Comp 36 50-86

FAHMY M A M & M K SELIM 1959 Studies on some trematode parasites of dogs in Egypt with special references to the role played by fish in their transmission Z Parasitenkdl 19 3-13

HEINEMANN E 1937 Über den Entwicklungszwischenlauf der Trematoden gattung Metorchus sowie Bemerkungen zur Systematik dieser Gattung Z Parasitenkdl 9 237-260

HUTTON R F & P. SOGANDARES BERNAL 1958 Variation in the number of oral spines of Phagocola longicollis Kunz and Chandler, 1956, and the description of P. ingens n sp. (Trematoda: Heterophyidae) J Parasitol 44 627-632

KISAROLY M & A TAFRO 1988 Pralég poszamosztjuk trematode-parasztofazuna ptica močvarica šaranskog ribnjaka 'Bardač' kod Speca Vrećića, Sarajevo 37 81 91

KUNTEZ R E & A C CHANDLER 1956 Studies on Egyptian trematodes with special reference to the heterophyids of mammals I. Adult flukes with descriptions of Phagocola longicollis and a Stephanopeora sp. from rats J Parasitol 42 448 459

MACKO J K 1964 Beitrag zur Fauna der Trematoden von Landen aus Zugwegen der Slowakei (CSSR) Helminthologia 5 85-106

MACKO J K 1969 Die Helminthofauna der Familie Rallidae in der Slowakei Helminthologia 10 259-276

MACKO J K 1974 Platymonathan der Wildente Anas platyrhynchos L. in der Slowakei (CSSR) Helminthologia 15 905-925

MORAVEC F 1990 First record of the nematode Syrniarva squamata (Linstow, 1883) from common common carp (Phalacrocorax carbo L.) in Czechoslovakia Folia Parasitol 37 165-166

MORAVEC F, NAŠINCOVÁ V & T SCHOLZ 1988 New records of helminth parasites from common carp (Cyprinus carpio L.) in Czechoslovakia Folia Parasitol 35 381-383

MUSILIOVA E 1991 (Helminthofauna of water birds in Czechoslovakia) Diplom work, Faculty of Sciences, University of Brno, 151 pp (in Czech)

ODENING K. 1962 Trematodes aus echtem Vogeln der Berliner Tierparks und der Umgebung von Berlin Zool Biul Zentralblatt 81 419-468

PAV J Zajček 1963 Beitrag zur Parasitofauna von Wilden ten und anderen Wasservögeln der Tschechoslowa kia Comm Institutu Forestalis Czechoslovenacie, Praha 3 69-75

PEARSON J C & G PRÉVOT 1985 A revision of the subfamily Haplócraceae Looss, 1899 (Trematoda: Heterophyidae), III. Genera Gereanodes and Condylocotylina in J Syst Parazitol 7 169-197
RIETSCHEL G & B WERDING 1978 Trematodes of birds from Northern Colombia Z Parasitolog 57 57-82
RUDOLPH C A 1819 Entomorum synopsis cui accedunt manussa duplex et indices locupletissimi Berolin. S A Becker, 811 pp
ŠITKO J 1968 Trematodes of birds of the family Laridae in Czechoslovakia. Věstník Čs Společ Zool. 32 275-292
SONIN M D 1986 [Key to the trematodes of fish-eating birds of the palaeartic region (Opisthorchidae, Renaculidae, Strigeidae)] Moscow Nauka, 214 pp (in Russian)
TARASCHIEWSKI H 1984 Die Trematoden der Gattung Heteropoma. Taxonomie, Biologie, Epidemiologie Dissertation, University of Hohenheim, 169 pp
TARASCHIEWSKI H 1985 Transmission experiments on the host specificity of Heteropoma species in 16 potential definitive hosts Z Parasitolog 71 505-518
TARASCHIEWSKI H 1987 Experiments on habitat selection of Heteropoma species in different definitive hosts J Helminthol 61 33-42
TARASCHIEWSKI H & A NICOLAIĐOU 1987 Heteropoma species in Greece record of H. heteropoma, H. sequans and H. dispar from the first intermediate host, Pleurolepis sonica J Helminthol 61 28-32
VOJTEK J 1976 Eingabe ökologische Aspekte des Studiums der Entwicklungszyklen der Trematoden Schepook Fac Nat UJEP Brno, Biol 1 6 1-7
VOJTEK J & L VOJTKOVA 1961 [To the knowledge of trematodes of birds and reptiles from the surroundings of Komarno] Publ Fac Sci Univ Brno 10 (No 321) 157-172 (in Czech)
VOJTEK J & L VOJTKOVA 1971 Life-cycles of trematodes of the order Strigeida in Czechoslovakia Schepook Fac Nat Univ Purkyně Brno, Biol 4 1 303-312
VYŠEKVARTSEVA N V 1969 [The morphology of development phases of the trematode Metorchis intermedius (Opisthorchidae) from the common] Parazitologija 3 346-353 (in Russian)
YAMAGUTI S 1971 Synopsis of digenetic trematodes of vertebrates Vol 1 II Tokyo Keigaku Publishing Co., 1074 pp + 349 Pts
YAMAGUTI S 1975 A synopetical review of life histories of digenetic trematodes of vertebrates Tokyo Keigaku Publishing Co., 590 pp + 219 Pts
Revision of the subgenus *Merodiscus* of the genus *Ptomaphagus*
(Coleoptera, Leiodidae, Cholevininae)

Jan RŮŽIČKA

Department of Ecology, Faculty of Forestry, Agricultural University.
Kamýcká 957, CZ-165 21 Praha 6, Czech Republic

Received November 11, 1992; accepted February 18, 1993
Published June 25, 1993

Taxonomy, distribution, Coleoptera, Leiodidae, Cholevininae, *Ptomaphagus*, *Merodiscus*, lectotype designation

Abstract. The subgenus *Merodiscus* of the genus *Ptomaphagus* is revised. Two species, *P. validus* (Kraatz) and *P. biharicus* Jeannel, are recognized. A key for identification is given, both species are redescribed and illustrated. Differences are found in the shape of the anterior part of spermatheca and of the mesosome, and in proportions of antennal segments. Lectotype is designated for *P. validus*. All available distributional data are presented, the known distributional range of both species is extended.

Subgenus *Merodiscus* was erected by Jeannel (1934) for three species: *Ptomaphagus validus* (Kraatz,1854) and *P. biharicus* Jeannel,1934 from Rumania and Yugoslavia, and *P. forticorinis* Matthews,1888 from Mexico. This subgenus was described and distinguished from the remaining two subgenera *Ptomaphagus* s.str. and *Adelops* Tellkampf,1844 in a short key based mainly on antennal structure (i.e., p. 162). The same key was used by Jeannel (1936).

A separate subgenus *Tupania* was later erected by Szymczakowski (1961) for the species *P. forticorinis*. In the same paper the restricted status of the subgenus *Merodiscus* was proposed, containing only the species *P. validus* and *P. biharicus*. The key to all four subgenera of *Ptomaphagus* was given (i.e., pp. 147-148), Peck (1973) also adopted this key in his paper.

A series of papers by Peck (1973, 1977, 1984 etc.) concerning the subgenera *Adelops* and *Tupania* showed that characters for recognition of the species of *Ptomaphagus* are mainly on male and/or female genitalia and medial part of mesoscutum. Because the distribution of the subgenus *Merodiscus* is wider than given by Jeannel (1936) and Peck (1973), the revision of the available material is presented.

MATERIAL AND METHODS

Location of all geographic names was found in Andrees Allgemeiner Handatlas, 6. Auflage, Von Velhagen et Klasing Verlag, Bielefeld u. Leipzig 1914, 224 + 532 pp.

Dissections and mountings of the male and/or female genitalia follow the procedure described by Peck (1973).

The material was studied with the aid of a Meopta stereoscopic microscope (magnification up to 100 x) and a Meopta compound microscope (magnification up to 200 x). All measurements were made using an ocular micrometer. A drawing arm was used for all the figures with the exception of male genitalia drawn on Visoplan projection microscope (Reichert).

Explanation of abbreviations used throughout the text: CIR - author's collection; CRR - collection R. Rouš.
Subgenus *Merodiscus* Jeannel, 1934

Type species: *Catops validus* Kraatz, 1852 (by original designation)

The members of this subgenus are defined by the antennal segment III 2.0 - 2.5 times longer than segment II.

KEY TO SPECIES

1. Antennal segment III about 2.5 times longer than segment II. Segment IV only slightly wider than long (Fig. 21). Mesopraesternum posteriorly forming right or obtuse angle in lateral view (Figs 15-17). Spermatheca with oblong excavated knob at anterior end (Figs 8, 10), forming a sharp angle with shaft when viewed from side (Figs 7, 9). Length 5.0 - 6.8 mm. ... *P. validus*

 - Antennal segment III about 2 times longer than segment II. Segment IV distinctly wider than long (Fig. 20). Mesopraesternum posteriorly forming sharp angle in lateral view (Figs 13, 14). Spermatheca with round flattened knob at anterior end (Figs 1, 3, 5), forming an obtuse angle with shaft when viewed from side (Figs 2, 4). Length 3.8 - 4.6 mm. ... *P. bilaricus*

SURVEY OF SPECIES

Ptomaphagus (*Merodiscus*) *validus* (Kraatz, 1852) (Figs 7-11, 15-19, 21-25)

Catoops validus Kraatz, 1852: 441

Redescription:

- Body length 5.0 - 6.8 mm. A robust species (Fig. 11). Head, pronotum and elytra reddish brown, antennae and legs reddish, apical half of antennal segment XI yellowish. Dorsal body surface covered with short, very dense, yellow hairs.

- Antennae (Fig. 21): segment III about 2.5 times longer than segment II. Segment IV only slightly wider than long, narrower than base of segment VII. Segment VI about 2.5 times wider than long.

- Pronotum 1.5-1.7 times wider than head, 1.4-1.5 times wider than long. Elytra 1.3-1.5 times longer than wide. Wings normal. Mesosternal carina low, mesopraesternum posteriorly with right or obtuse angle in lateral view (Figs 15-17).

- Spermatheca (Figs 8, 10) simple, with oblong, excavated knob at anterior end, forming a sharp angle with shaft when viewed from side (Figs 7, 9). Central shaft narrow or slightly curved, posterior end with wide knob.

- Stylus (Fig. 19) apically with 2 - 3 long setae, subapically with one smaller seta on each side. Apical two thirds of stylus furnished with small, recurved hooklets (Fig. 19).

- Valvulae bearing a dense fringe of about 25-30 setae.

- Aedeagus (Fig. 23) in profile straight, relatively robust, gradually tapering, ending with a small downcurved tooth, tip (Fig. 25) broadly rounded dorsally, with a terminal point, from below with a row of 8 small setae on each side. Stylet and internal structure of the aedeagus as on Fig. 22. Each paramere with one small seta apically and two longer setae subapically (Fig. 24). Signum gastrale and genital plate normal (Fig. 18).

Variation:

The spermatheca varies slightly in bending of central shaft, in a specimen from Serbia (Fig. 9, 10) the central shaft is strongly curved and thinner than in the lectotype, and the angle between
the shaft and the knob on anterior end is less sharp when viewed from side.

Material studied:
Other material: Romania: "Herkules, Mihok, 208 II/25" 1♀ (NMP); "Herkulesforde, leg. Pavel, 1880, 569,607" 1♂ (TMB); "Stoicu, Herkulesbad, v.Bodemeyer lg." 1♂ (MHC); "Banat, Herkulesbad, v. Bodemeyer lg." 1♂ (MHC); 1♀ (MHC); 1♀ (ZMB); "Herastrau, Petru Semeniuc, v.ill.1929, det. Hlinkovsky x.1932" 1♂ (NMP); "Bannat, Ablelle de Perrin" 1♂ (MNHNP); "Hungary merid., Promaphagus validus Kr., coll. Reitter" 1♀ (TMB); "Hungaria; coll. Wendler, Mus. Pragense" 1♂ (NMP); "Nemec Bogdan, Merkl (Hung); coll. Roubal" 1♂ (SNMB); Yugoslavia: "Serbian, Merkl. coll. Apfelbeck" 1♀ (TMB); "Carniolia, Reitter" 1♀ (CRR); "Serbian, Zebe, Grouvelle, coll. Reitter" 1♂ (NMHNP); Ukraine: Pulkary Akkerman. u. Bessams., Černovín, 16.iv.911" 1♀ (ZIP); ditto, but "10.vi.911; Pt. validus Kr., Joannell det." 1♀ (ZIP).

Figs 1-12. 1-3,12 - *Promaphagus bharicus* ♂. Dobry vec⁰. 4-6 - *P. bharicus* ♂. type. 7-8,11 - *P. validus* ♂. lectotype; 9-10 - *P. validus* ♂. Serbia, Merkl leg.; 1 - spermatheca dorsally; 3,5,8,10 - ditto laterally; 2,4,7,9 - posterior part of spermatheca ventrally; 6,11,12 - habitus dorsally. (Scale 0.15 mm for Figs 1-5, 7-10; 1.5 mm for Figs 6, 11, 12).
Rumänia: Nagy Bogás, near Resita (Jeannel, 1936); Oravizza; Mons Domoglet; Rumunyest (all Kuthy, 1918); Jugoslawien: Banat Serbe (Jeannel, 1936); Slovakia: Slavensky kras, Slavec - Gombasek (Gottwald, 1982).

Distribution (Maps 1, 2):

Rumänia: southwestern part (formerly a part of Hungary, therefore older material was labelled and referred to as from “Hungaria”); Jugoslawien: Serbien; Slowakien; Ukraine (first record for this area).

![Map 1.2. Distribution of *Piomaphagus (Merodiscus)* species: 1 - Slov. krz, Slavec - Gombasek; 2 - Slov. krz, Dolaj varch; 3 - Bilbor, Mt. Dentina; 4 - Német Bogás; 5 - Banat, Petra Seremica; 6 - Oravita; 7 - Herkulesfird; 8 - Mons Domoglet, 9 - Ukraine, Aklerman, Parkary.](image)

Piomaphagus (Merodiscus) bifaricus Jeannel, 1934
(Figs 1-6, 12, 14, 20)

Piomaphagus (Merodiscus) bifaricus Jeannel, 1934: 163

Redescription:

Body length 3.8 and 4.6 mm. A minute species (Figs 6, 12). Head, pronotum and elytra reddish brown to dark brown, antennae and legs reddish, apical half of antennal segment XI yellowish. Dorsal surface of body covered with short, dense, yellow hairs.

Antennae (Fig. 20): Segment III about 2.0 times longer than segment II. Segment IV distinctly wider than long, narrower than base of segment VII. Segment VI about 3.5 times wider than long.

50
Pronotum 1.5 times wider than head, 1.5 times wider than long. Elytra 1.3 and 1.4 times longer than wide. Wings normal. Mesosternal carina low, mesopriesternum posteriorly with sharp angle in lateral view (Figs 13, 14).

Spermatheca (Figs 1,3,5) simple, with round flattened knob at anterior end, forming an obtuse angle with shaft when viewed from side (Figs 2,4). Central shaft slightly curved, posterior or end with wide knob.

Stylus apically with 2 long setae, subapically with one smaller seta on each side. Apical half of stylus furnished with small, recurved hooklets.

Figs 13-25. 13 - *Plomaphagus bikanicus* sp., Dolny Vrec; 14,20 - *P. bikanicus* sp. type; 15 - *P. validus* sp. Serbia, Merki ler.; 16 - *P. validus* sp. Buzat, Peru Semonia; 17 - *P. validus* sp. Herkuvsfird, Mink ler.; 18,22-25 - *P. validus* cf. "Hungaria", coll. Wedel, 19.21 - *P. validus* sp. lectotype. 13-17 - medial part of mesosternum laterally; 18 - genital segment dorsally; 19 - stylus laterally, detail: hooklets on distal part; 20-21 - right antenna dorsally; 22 - styllet and internal structure of aedeagus dorsally; 23 - aedeagus laterally; 24 - distal part of right paramera laterally; 25 - tip of aedeagus dorsally. (Scale 0.15 mm for Figs 13,14,19,22,24,25; 0.25 mm for Figs 15-18, 23; 0.4 mm for Figs 20,21).
Valvifer bearing a dense fringe of about 25 setae.
Male unknown.

Material studied:
Type material: holotype ♀ labelled: "Dennata, Busan, R. Jeannel, Trans. vi.25; Type: Muséum Paris, Coll. R. Jeannel, 1931" (MNHN)

Distribution (Map 1):
Romania: Bihor; Slovakia (first record for this region and central Europe).

Acknowledgements

My thanks are due to the following persons who kindly loaned me the material for study: Miss Nicole Bert (MNHN); Dr. S. Bilý (NMP); Dr. O. Merkl (TMB); Mr. M. Mikat (MHK); Mr. R. Mlejnek, Pardubice, Czech republic; Dr. T. Okulík (SNNB); prof. S.B. Peck, Carleton University, Ottawa; Mr. R. Roux, Prague; Dr. M. Uhlík (ZMB) and Dr. M.G. Volkovitch (ZIP). I am also very indebted to Mr. M. Perreau, Paris, for providing me with data on some material from MNHN.

REFERENCES

Photoperiodic response of *Chironomus plumosus* (Diptera: Chironomidae) under laboratory conditions

Jana RŮŽIČKOVÁ

Institute for Environmental Studies, Charles University,
Beškovská 2, CZ-128 03 Praha 2, Czech Republic

Received May 20, 1992; accepted February 18, 1993 Published June 25, 1993

Photoperiodic response, dormancy, emergency, Diptera, *Chironomus*, larvae

Abstract. The photoperiodic response of *Chironomus plumosus* from the carp ponds in Southwestern Bohemia was investigated. The larvae in the fourth instar are sensitive to photoperiodic signal. Long days and higher temperatures lead to the emergence of most imagines early after the start of the experiments, i.e., after 7-8 weeks, while short days and lower temperatures increased the duration of dormancy to 4-6 months.

INTRODUCTION

The insects photoperiodism has been intensively studied. Beck (1972) and Saunders (1984) have summarized some aspects of the physiology and ecology of photoperiodism. The photoperiodic response of *Chironomus plumosus* was then investigated experimentally, mainly by Fischer (1974) and Iseichen et al. (1979). The retardation in development occurs in response to the photoperiod.

Based on this investigation, the course of the development of *Chironomus plumosus* is analyzed here under various light and temperature conditions.

MATERIAL AND METHODS

The experiments were carried out with the *Chironomus* larvae in the fourth instar originating from the carp ponds in Southwestern Bohemia (1986 - Všerovické Jezírko, 1987 - Velký Pálvice). The larvae were transferred (24th November 1986, 22th November 1987) to artificial aquaria with a 10-15 mm layer of pond sediment. Yeast in suspension was added. The larvae were exposed to photoperiods of 15L:9D (long day - LD), 12L:12D, 9L:15D (shorter days - SD) at 15±1°C in the first experiment. In the second experiment two photoperiods (16 h and 8 h, i.e., long and short days) were accompanied by lower and high temperatures (16±1°C and 21±1°C) installed neon lamps (395 lumens) were controlled by time switches. About 300 individuals were present in an area of 600 cm² in each series of experiments.

RESULTS AND DISCUSSION

Fig. 1 depicts the emergence of *Chironomus plumosus* under different photoperiods (15, 12, 9 h) at 15°C. The first imagines appeared around the 19th day and the emergence occurs over a period of about 50 days under LD and about 4 months under SD conditions. 21-25% larvae died under different light conditions at 15°C. The majority of adults was synchronized early after the beginning of emergence mainly under LD conditions, when 103 imagines i.e. about 50% of the
population appeared between the 4th and 12th days. With photoperiod of 12 h, only 58% of imagines (i.e., about 30%) emerged after 40-48 days. With photoperiod of 9 h, two peaks of imagines appeared and 30-40 imagines (about 20%) emerged after 4-12 and 40-48 days.

Fig 1. Emergence of Chironomus plumosus under LD and conditions at 15°C.

A dormancy is well known in different groups of insects and various species of the Chironomidae family. In Chironomidae the dormancy occurs at the end of the fourth larval instar in response to the photoperiod. The retardation in development was first found in some chironomids living on water plants (Thienemann, 1921). The phenomenon was observed later in a laboratory population of Chironomus tentans (Clever, 1962; Pelling, 1964) and was experimentally demonstrated by Engelmann and Shappirio (1965). The photoperiodic response of three species of Chironomidae was studied by Danks (1978). The influence of the photoperiod on the development of Chironomus plumosus was analyzed in detail mainly by Fischer (1974) and Illiehen et al. (1979). A dormancy, induced by short days, has been observed (oligopause). The dormant larvae move, take in food and can also become larger than those which metamorphose directly (Fischer, 1974, Bertogg and Fischer, 1978). The dormancy lasts from a few days to several months, then termination takes place spontaneously (Fischer, 1974, Illiehen et al., 1979).

The development is fundamentally dependent on the temperature, thermic quiescence and strengthening of the photoperiodic oligopause occur at lower temperatures (Fischer, 1974). Therefore, development of the animals was compared under SD and LD conditions at lower and higher temperatures. The course of emergence is shown in Fig. 2. The first imagines appeared around the 10th day and the eclosion time covers a range of about 60 days (larval mortality was 11-13%). The development lasts about 6 months under short day conditions accompanied by lower temperatures (25% of the larvae died). Higher temperature and LD conditions lead to the faster development of most of the individuals. The photoperiodic response is stronger at lower
temperature. Higher temperature leads to synchonic emergence of imagines under SD and LD conditions (about 150 organisms, i.e., 60% of the population appeared around the 4-11th days). Almost the same situation was recorded for long day accompanied by lower temperature (111 imagines, i.e., 45% emerged in the same time). The animals tend toward dormancy not only under SD conditions but also with long days (Fischer, 1974, Ineichen et al., 1979) and at high temperature (Matěá, 1984). It was observed, in contrast to the other authors, that the organisms survive well under unnatural conditions, when SD and high temperature were combined.

![Bar chart showing % emerged over weeks](chart)

Fig. 2. Emergence of *Chironomus plumosus* under LD and SD conditions at 16 and 21°C.

A much more complicated situation can be observed under natural conditions where the changes of temperature and photoperiod are repeated and many interactions affect the larvae. Nonetheless, some general conclusions could be drawn. It is evident that the photoperiod and dormancy appear to play an important role in the ecology of *Chironomus plumosus* under natural conditions. As the days become shorter in late summer, the larvae enter dormancy and are ready for winter. The long day dormancy is important during periods of bad weather in the summer (Fischer, 1974). The population that has survived the winter does not emerge synchronously (differing tendency to dormancy) and emergence is influenced mainly by the temperature (Ineichen et al., 1979). Fischer (1974) distinguishes two ecological races of *Chironomus plumosus* on the basis of different tendencies to dormancy - "river plumosus" (dormancy is induced by short days at low temperatures) and "lake plumosus" (dormancy occurs in response to a short photoperiod at all temperatures).
CONCLUSION

1. The photoperiodic response of *Chironomus plumosus* from carp ponds was investigated after transfer to several laboratory combinations of photoperiod and temperature. The results reflect the sensitivity of the individuals in the fourth larval instar to the photoperiodic signal.

2. The dormancy occurred mainly under short-day conditions at lower temperatures. This state lasted for 4-6 months in some organisms. At high temperatures, the imagines emerged independently of the day-length and the development of the larvae lasted about 7-8 weeks. Almost the same situation was observed under long-day conditions accompanied by lower temperatures.

REFERENCES

New and Interesting Oribatid Species of the Family Euphthiracaridae
(Acari: Oribatida) from Cuba.

Josef STARÝ

Institute of Soil Biology, Czechoslovak Academy of Sciences,
Na sádkách 7, CZ 370 05, České Budějovice, Czech Republic.

Received January 1, 1992; accepted February 13, 1992
Published June 25, 1993

Taxonomy, description, Microtritia, Poesia, Euphthiracaridae, Oribatida, Cuba

Abstract. Two new species of oribatid mites, Microtritia glabrata sp. n., and Poesia microseta sp. n. have been described and figured. Eight other Cuban species and subspecies of the family Euphthiracaridae have been listed.

INTRODUCTION

About 72 species and subspecies of the family Euphthiracaridae have been described so far. They are distributed from tropics to northern and southern forest boundary. They have not been founded in soils of tundra. This group is numerous on species in temperate zone of Palearctic and Nearctic region and in tropical soils, too.

Investigations of the Cuban fauna of oribatid mites have started by the work of Balogh & Mahunka (1974, 1978, 1979, 1980) and followed by other authors (Vasiliu & Calugar, 1977, Calugar & Vasiliu; 1977; Scul & Jeleva, 1984), but record of species of this family have not been published so far, only Rhysotritia ardua has been recorded by Scul & Jeleva (1984) from Cuba, but this paper doesn't allow to make a precious comparison. Altogether 10 species of this family have been found in large material of soil mites collected by Dr J. Rusek in Cuba and given kindly to the author for determination. Description of two new species is given in this contribution.

LIST OF LOCALITIES

K-146, Cuba, Province Habana, Catalina de Gómez, Cueva El Mundo 13. 11. 1979, guano sample leg. J. Rusek,
K-150, Cuba, Province, Guantanamo, Jamaica, 17. 11. 1979, pasture soil sample, leg. J. Rusek,
K-152, Cuba, Province, Guantanamo, 17. 11. 1979, garden of Instituto del Suelos, soil sample, leg. J. Rusek,
K-153, Cuba, Guantanamo, 17. 11. 1979, garden of Instituto del Suelos, soil sample, leg. J. Rusek,
K-154, Cuba, Guantanamo, 17. 11. 1979, garden of Instituto del Suelos, sample of wood and decaying wood from a tree, leg. J. Rusek,
K-155, Cuba, Guantanamo, 17. 11. 1979, garden of Instituto del Suelos, soil sample bellow Casuarina sp., leg. J. Rusek
K-170, Cuba, Habana, Nautica, 27. 11. 1979, garden, sample of decaying wood with termites, leg. J. Rusek,
K-178, Cuba, Province Cienfuegos, Soledad, 30. 11. 1979, botanical garden, old forest, soil sample, leg. J. Rusek,
K-184, Cuba, Province Cienfuegos, Soledad, 30. 11. 1979, botanical garden, old forest, sample of decaying bromeliads, leg. J. Rusek.
K-189. Cuba, Province Cienfuegos, Soledad, 30. 11. 1979 botanical garden near a brook, sample of moss from a
leg. leg. J. Rusek.
K-190. Cuba, Province Cienfuegos, Soledad, 30. 11. 1979 botanical garden near a brook, litter and soil sample
from bamboo stand, leg. J. Rusek.
K-192. Cuba, Province Sancti Spiritus, Escambray, Topes de Collantes, 1. 12. 1979, Pinus caribea plantation,
litter sample, leg. J. Rusek.
K-194. Cuba, Province Sancti Spiritus, Escambray, Topes de Collantes, 1. 12. 1979, Pinus caribea plantation,
decaying bark sample, leg. J. Rusek.
K-197. Cuba, Province Sancti Spiritus, Escambray, Topes de Collantes, 1. 12. 1979, Pinus caribea plantation,
sample of fine roots from tree fern, leg. J. Rusek.
K-198. Cuba, Province Sancti Spiritus, Escambray, Topes de Collantes, 1. 12. 1979, Pinus caribea plantation, soil
sample, leg. J. Rusek.
K-200. Cuba, Province Sancti Spiritus, Escambray, Topes de Collantes, 1. 12. 1979, moist soil sample from forest
near stream, leg. J. Rusek.
J. Rusek.
K-206. Cuba, Province Sancti Spiritus, Escambray, Topes de Collantes, 1. 12. 1979, forest, soil sample leg
J. Rusek.
K-207. Cuba, Province Sancti Spiritus, Escambray, Topes de Collantes, 1. 12. 1979, giant fern stand near stream,
litter and soil sample, leg. J. Rusek.
K-209. Cuba, Province Sancti Spiritus, Escambray, Topes de Collantes, 1. 12. 1979, Eucalyptus sp. plantation,
soil sample. leg. J. Rusek.
K-229. Cuba, Province Pinar del Río, Sanimido, Pica Pica, 8. 12. 1979, near Cueva del Retagadero, sample of
drift wood near stream, leg. J. Rusek.
K-230. Cuba, Province Pinar del Río, Sanimido, Pica Pica, 8. 12. 1979, near entrance of Cueva Obscura, forest
soil sample, leg. J. Rusek.
J. Rusek.
K-236. Cuba, Province Pinar del Río, Pas de Guajahón, 7. 12. 1979, rain mountain forest, litter sample, leg.
J. Borhidi.
J. Borhidi.
K-268. Cuba, Province Cienfuegos, Yaguaranes, 2. 10. 1981, forest deciduous wood sample with termite holes, leg.
J. Rusek.
K-270. Cuba, Province Cienfuegos, Yaguaranes, 2. 10. 1981, forest, deciduous wood sample with termite holes, leg.
J. Rusek.
K-272. Cuba, Province Cienfuegos, Yaguaranes, 2. 10. 1981, forest decaying wood of palm tree sample, leg
J. Rusek.
K-293. Cuba, Province Holguín, Guachillas de Moa, east of Punta Goos, 20. 10. 1981, humus sample, submontane
forest, leg. J. Rusek.
K-299, Cuba, Province Holguín, Guanchitas de Moa, east of Punta Gorda, 20. 10. 1981, submontane forest, bark and mosses sample, leg. J. Rusek.

LIST OF IDENTIFIED SPECIES OF ORIBATID MITES

Microoritta glabrata sp. n. - K-189 (lex.), K-198(lex.), K-283(13ex.), K-292(2ex.).

Microoritta tropica Markell, 1964 - K-308(lex.).

Pocist microseta sp. n. - K-322(2ex.), K-322(3ex.).
Fig. 1. *Microtricha glabrata* sp.n., A - lateral view of the body without legs, B - analgenital region, ventral view, C - apex in dorsal view, D - posterior part of the body. Scale 100 μm.
Microtrans glabra sp.n. (Fig.1A-D,2A-B,3A-D)

Diagnosis: Clavus of sensillus with very long spike, long terminal fissura, all notogastral and aspal setae very fine.

Description: Length of aspis 125-135 μm, breadth of aspis 115-128 μm, length of notogaster 250-285 μm, breadth of notogaster 185-205 μm, breadth of notogaster 170-195 μm. Colour light yellow. Cuticle smooth without thick layer of cerotegument and conspicuous structure.

Aspis (Fig. 1A,C) with one lateral carina, all aspial setae very fine, badly observable, exobothridial ones not observable. Distance between rostral and lamellar setae approximately equal and distance between interlamellar setae approximately 2x shorter than between interlamellar ones. Base of interlamellar setae in half distance between interlamellar and rostral ones. Comparatively long sensillus extended in half its length. Clavus of sensillus with very long and sharp spike. Bothridial squama situated under comparatively small bothridium. Near bothridium, under lateral carina 4-5 fine sclerotized spots.

Fig. 2. Microtrans glabra sp.n. A - right chelicer in lateral view. B - left palp with metulum. Scale 100 μm.

Notogaster (Fig. 1A) almost globular, smooth without distinct structures. All 14 pairs of notogastral setae very fine, badly observable. Fissura terminalis long, reaching to the base of setae ps3. Collar on anterior part of notogaster with some fine foveolae.

Anogenital region (Fig. 1B), anogenital plates smooth with 4 pairs of genital, 3 pairs of anal
and 4 pairs of adanal setae, adgenital ones not observable. Genitoadventral and adanal plates separated by one long and distinct interlocking triangle situated approximately in the half of anogenital region. All setae of this region very fine and smooth, all approximately in the same length.

Fig. 3. *Microtritia glabrata* sp. n. A - right leg I, antiaxial view, B - leg II, antiaxial view, C - leg III, paraxial view, D - right leg IV, antiaxial view. Scale 100 μm.
Chelicerae (Fig. 2A) robust, without Trägård's organ, measurements of digitus fixus 115x63 um, and digitus mobilis 35x25 um, both with 5 blunt teeth. Seta chb 2x longer than cha, both smooth with sharp spike.

Palps (Fig. 2B) with three joints, chaetotactic formula 2-1-8(1), originated on genae with comparatively large rutellum with 2 distinct incisions on the top.

Fig. 4. Poezia micrroseta sp.n., A - lateral view on the body without legs, B - anogenital region, ventral view, C - aspin in dorsal view, D - posterior part of the body. Scale 100 um.
Legs (Fig. 3A-D) all monodactylos, comparatively short with long setae especially solenidi- ons, chaetotactic formulae I 0-2-1(2)-5(1)-12(3)-1, II 0-2-3(1)-2(1)-13(2)-1, III 1-2-2(1)-2(1)-9-1, IV 1-1-2(1)-8-1.

Affinities: New species is very easy distinguishable from congeners by shape of sensillus, long fissura terminalis and presence of very fine, badly observable notogastral setae. Shape of the sensillus of the new species is very similar to M. schusteri Mäkell, 1964, but new species differs in longer sharp spike on the top of the sensillus (length of the spike of new species is more than 1 half of the length of the sensillus), by long fissura terminalis (M. schusteri has only sinus terminalis), and M. schusteri has much longer all body setae.

Types: Holotypus H° - 20. 11. 1981, - K-283 in ethanol and 16 paratypes one in slide and others in ethanol are deposited in authors collection in the Institute of Soil Biology, Czechoslovak Academy of Sciences, České Budějovice.

Pocista microseta sp.n.
(Figs. 4A-D, 5A-B, 6A-D)

Diagnosis: one lateral carina, tridactylous legs, very short body setae. 8 pairs of genital and 2 pairs of adgenital setae, the whole body setae equal in the length.

Description: length of aspis 250-282 mm, breadth of aspis 243-272 mm, length of notogaster

Fig. 5. Pocista microseta sp.n., A - right palp with retrolor, B - left chelicera. Scale 100 μm.
525 - 558 μm, heith of notogaster 352-385 μm, breadth of notogaster 305-323 μm. Colour ochre yellow. Cuticle fine smooth with small tenuous points.

Aspis (Fig. 4A,C) with one lateral carina on each side, anterior part of aspis without conspicuous rim, all setae on aspis fine, smooth and very short, the exobothridial setae longer than other ones on aspis, 4-5x shorter than length of sensillus. Distance between rostral setae shorter

![Diagram of P. microseta](image)

Fig. 6. *P. microseta* sp.n., A - right leg I, antiaxial view, B - left leg II antiaxial view, C - left leg III, paraxial view, D - left leg IV, paraxial view. Scale 100 μm.
than between interlamellar ones and this shorter than distance between lamellar ones. Sensillus originating in a very small bohdrum, comparatively short, gradually extended and with blunt top. Little bohdral squama situated bellow bohdrum.

Notogaster (Fig. 4A) oval, comparatively long, smooth, with dark collar on anterior margin of notogaster, with 14 pairs of very fine and short notogastral setae. Surface of notogaster with ten layer of cuticle which without distinct structures, ended by comparatively long fissum terminalis reaching behind the bases of the setae p9 (Fig. 4D).

Anogenital region (Fig. 4B), genitoaadinal plates much longer than interanal ones, first interlocking triangle situated posteriorly, with two distinct lateral sutures, short adanal plates ended by small second interlocking triangle. All surface of this region smooth, only lateral margin of genitoaadinal plates with small spots. Genitoaadinal plates with 8 pairs of very fine, short and smooth genital setae. Setae gl-4 on anterior part of genitoaadinal plates near together than other genital ones (g-5-8). Two pairs of smooth and short aadinal setae equal in the length to genital ones. Three pairs of fine, short and smooth anal and aadinal setae.

Chelicerae (Fig. 5B) large with smooth surface, without seta chb, seta cha smooth and sharped on the top. Measurements of digitus fixus 175 x 85 µm, and digitus mobilis 62 x 40 µm. Digitus fixus with 5 blunt teeth and digitus mobilis with 4 ones. Tragulids organ absent.

Palps (Fig. 5A) with three joints, comparatively slender, chaetotactic formula 2-2-8(1), originating in genua with slender rutilum with three incisions on the top.

Legs (Figs. 6A-D) comparatively long and slender, all tridactylous. Chaetotactic formulae I 1-3-4(1)-5(1)-15(3)-3, II 2-1-3(1)-4(1)-13(2)-3, III 2-2-1(2)-2(1)-8-3, IV 2-2-1(2)-2(1)-8-3.

Affinities: genus Poesia Mah. has been known only from Tanzania and Kenya in eastern part of Africa so far. This is first record of Poesia species from Neotropical region. New species belongs evidently to the genus Poesia, but has many differences, which differs from African Poesia species. We can easy distinguished this new species from congeners by short and fine body setae, and by posterior position of the first interlocking triangle. Only P. kunstj Stary, 1988, has tridactylous legs, but this species has a long body setae and has only 5 genital setae. P. bicarinata Stary, 1991, has 8 genital setae, too, but it differs from new species in presence of two lateral carinae on the aspis and in a long body setae and monodactylous legs.

Types: holotypus Ho - 16. 11. 1981 - K-323, in ethanol and 4 paratypes, one on the slide and others in ethanol are deposited in author's collection in the Institute of Soil Biology, Czechoslovak Academy of Sciences, České Budějovice.

Acknowledgements

This study is based on large material collected by Dr. J. Rusek DrSc, and by Dr E. V. Gordeeva CSc on Cuba. I wish to express them my hearty thanks. I thank Dr J. Rusek for his critical reading of the manuscript and Dr J. Jirka for his help with English translation.

REFERENCES

Folia Heyrovskyana

publishes original papers on systematic entomology. It is intended to extend publishing opportunities of Czech and Slovak entomologists, but papers of foreign authors are also accepted. At least ten consecutively numbered issues (eight pages each) in 1,000 copies will be published yearly. Each paper is published separately.

Accepted are papers in major languages using Roman characters with summary in Czech. All papers are approved by the Editorial Board. Manuscript should not be more than 10 pages including illustrations. The entire manuscript should be typed with double spacing (30 lines per page) on one side of paper. Figure legends should begin on new page. Proofs will be sent to the author. Each paper will appear within 30 days after return of corrected proofs. Fifty reprints are supplied free of charge. Manuscript should be submitted on address of the Editor (see below).

Price for one issue is 6 DM, subscription for ten issues 50 DM or equivalent in USD, including postage. Payment on bank account number KB Praha 6, č.s.: 23541-061, Komerční banks, Praha 6, Czech Republic. To be ordered on the address of the editor: Jaroslav Picka, Sezimova 7, CZ-140 00 Praha 4, Czech Republic.

The editor of Folia Heyrovskyana is preparing the publication of the Check-list of Czechoslovak Coleoptera for the second half of 1993.

The Check-list will be a collective work of over 30 Czech specialist and will record the knowledge of the beetle fauna of former Czechoslovakia at the end of 1992. Brief comments to the state of knowledge of particular families will be given as well as an account of the zoogeographic subdivision of the former Czechoslovakia.

The Check-list of Czechoslovak Coleoptera will be published as supplementum of Folia Heyrovskyana in a separate hard-bound volume. The price could not be fixed yet, but the editor will provide all subscribers of Folia Heyrovskyana with a 50% discount. Preliminary orders should be send to the address of the Editor (see above).
Growth, biomass, production and survival of perch population (Perca fluviatilis, Percidae, Ostechthyes) in small experimental pond - Central Bohemia, Czech Republic

Miroslav ŠVÁTORA & Rejena SÁNCHEZ SÁNJOSE
Department of Zoology, Charles University, Viničná 7, 128 44 Praha 2, Czech Republic

Received February 2, 1991; accepted August 21, 1992
Published 1993

Experimental pond, Perca fluviatilis, Ostechthyes, abundance, growth, biomass, production, survival, Czech Republic

Abstract. The growth, biomass, production and survival of an artificially stocked perch population was studied in a small experimental pond Pilský (0.33 ha) in 1981 and 1982. The total production achieved value 56.7 kg ha⁻¹ available production 47.6 kg ha⁻¹ and mean biomass 140.6 kg ha⁻¹ and these data are the highest out of all the data available for the perch from Czechoslovakia. The value of the annual survival S=0.700 for the whole population was calculated with maximum for the fish of the age 4-5 (S=0.906).

INTRODUCTION

The study of the production ability of organisms is one of important problems solved in population investigations. The study of the population dynamics of the forage fish species (as e.g. perch or roach) is a one part of this research. The species play an important role in fish communities in reservoirs and in ponds as feeding competitors with other fish species.

In the work reported here the authors observed the experimentally stocked perch population in a small pond Pilský (0.33 ha) in two seasons (1981 and 1982) and they studied the growth, biomass and production.

MATERIAL AND METHODS

The experimental fish - perch (Perca fluviatilis L.) were stocked into the Pilský pond (0.33 ha, maximal dept. 1.8 m, mean depth 0.6 m, with submerged vegetation - Elodea canadensis on 1/2 of its area) on Apr 10, 1981. The pond is situated in the village Jevany near Prague (central Bohemia). In this way, we continued in an experiment started in 1978 (Pivnička & Švátoro, 1983). In 1981 (Apr 11) total of 1011 specimens (age 1-7) were stocked in 1982 (May 17) 881 specimens were caught. The perch was at the only years in the Pilský pond. The sex ratio in the stocked perch population was 1:1 (fishes of age 2-7, total 776 specimens). The sex ratio was determined
very simply because the time of stocking was before the spawn. In 1981 as well as in 1982 scales were sampled in 156 and 176 specimens respectively (samples were independently selected) and then the fishes were stocked to the pond.

In all fishes the standard length (SL) was measured in mm, fishes were weighed with accuracy of 0.5 g. For the age determination and the back calculation of the growth the scale method was used with the correction towards the scale formation according to R. Les method. For the back calculation of the lengths, the 19 mm correction was adopted (Frank, 1967).

The age composition of the lengths groups of the sample was related to the whole population (Fig. 1), the length composition of the perch population in 1981 and 1982 see Fig. 2. The data obtained were subsequently used for the calculation of the survival of the whole population stocked as well as of particular age groups.

The weight growth was evaluated with the help of the production index PI (i.e. the sum of weight increments from the 2nd to 6th age group - PI[2-6]; Pivnicka, 1972); the total and available production (P, PA) was then calculated according to Ricker (1975) and Pivnicka (1972) (total production PI = \sum G_i; instantaneous coefficient of weight growth G_i = \frac{w_{i+1}}{w_i}; w_i - weight at the time of annulus formation, \Delta t - one year, average biomass B_i = \frac{A_i w_i}{\Delta w_i} , A_i - number of specimen in the age group, available production PA = \sum A_i \Delta w_i ; \Delta W - weight increment of the age group per year, w_i = w_i - w_i'; w_i - weight at the time of annulus formation, w_i' - weight at the time of annulus formation).

RESULTS

Growth

In 1981 (Apr 10) 1011 fish specimens (age 1-7) were stocked. The fishes were partially taken from a proceeding experiment in this pond in 1980 (that time 192 fish of age 1-8 were stocked) and a portion came from catching in the Jevansky pond, which is situated near the experimental pond. For the age growth analyses, total of 156 specimens from 1980 were treated (Table 1) and in the 1st age group fish specimens used were born already in the Pilsky pond in the season 1980/1981.

The calculated values of the production index PI[2-6] = 211 g is very high, similar to values ascertained for example to reservoirs after its filling and is twice higher than our results for reservoirs from Czechoslovakia (100 g). The length - weight relationship was determined as log w = -5.558 + 3.425 log L, r = 0.999. In the subsequent year 1982 (May 17) the fish specimens from the experimental pond were caught again and we took a revelant sample for the growth analyses (175 specimens - Table 2). Total of 881 individuals of the age 1-7 were caught (out of them 173 the 1st age group). The value of the production index of 118 g is the average growth for Czechoslovak reservoirs and ponds; log w = -4.060 + 2.721 log L, r = 0.998.

The growth of perch was influenced by changes in population density in the pond (see discussion).

Survival

In 1981-1982 the survival of the stocked perch population was followed. Out of the 1011 specimens stocked in 1981, 708 specimens were caught in 1982 (age 2 - 7). The survival of stocked fish was S = 0.700. On the basis of the age composition of samples from 1981 and 1982, after a calculation with respect to the whole population it was also possible to establish survival of individual age groups in the given period (Table 3). The highest value of survival was in age 4 - 5 (S = 0.906) with gradual decrease to the value S = 0.067 for age 6 - 7. The observation of survival of males and females separately was not followed. The high mortality of
Table 1. Length growth of the perch in Pilský pond in 1981

<table>
<thead>
<tr>
<th>age</th>
<th>n</th>
<th>Lc</th>
<th>w</th>
<th>l1</th>
<th>l2</th>
<th>l3</th>
<th>l4</th>
<th>l5</th>
<th>l6</th>
<th>l7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>65</td>
<td>4.6</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>100</td>
<td>20</td>
<td>62</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>121</td>
<td>36</td>
<td>62</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>167</td>
<td>119</td>
<td>62</td>
<td>97</td>
<td>137</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>184</td>
<td>158</td>
<td>61</td>
<td>103</td>
<td>142</td>
<td>185</td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>209</td>
<td>239</td>
<td>62</td>
<td>104</td>
<td>137</td>
<td>168</td>
<td>190</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>208</td>
<td>240</td>
<td>60</td>
<td>94</td>
<td>117</td>
<td>151</td>
<td>178</td>
<td>194</td>
<td>208</td>
</tr>
<tr>
<td>Tot</td>
<td>156</td>
<td>average</td>
<td>62</td>
<td>100</td>
<td>131</td>
<td>163</td>
<td>184</td>
<td>202</td>
<td>208</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Length growth of the perch in the Pilský pond in 1982

<table>
<thead>
<tr>
<th>age</th>
<th>n</th>
<th>Lc</th>
<th>w</th>
<th>l1</th>
<th>l2</th>
<th>l3</th>
<th>l4</th>
<th>l5</th>
<th>l6</th>
<th>l7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>59</td>
<td>6.0</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2+</td>
<td>33</td>
<td>101</td>
<td>25</td>
<td>61</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3+</td>
<td>22</td>
<td>128</td>
<td>43</td>
<td>63</td>
<td>99</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4+</td>
<td>32</td>
<td>162</td>
<td>94</td>
<td>60</td>
<td>99</td>
<td>133</td>
<td>158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+</td>
<td>39</td>
<td>195</td>
<td>156</td>
<td>63</td>
<td>105</td>
<td>140</td>
<td>177</td>
<td>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6+</td>
<td>15</td>
<td>193</td>
<td>147</td>
<td>62</td>
<td>103</td>
<td>137</td>
<td>161</td>
<td>180</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>7+</td>
<td>1</td>
<td>220</td>
<td>194</td>
<td>62</td>
<td>95</td>
<td>127</td>
<td>151</td>
<td>181</td>
<td>203</td>
<td>218</td>
</tr>
<tr>
<td>Tot</td>
<td>175</td>
<td>average</td>
<td>61</td>
<td>100</td>
<td>132</td>
<td>162</td>
<td>184</td>
<td>197</td>
<td>218</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Survival rate (S) of the stocked perch, the Pilský pond, 1981 to 1982

<table>
<thead>
<tr>
<th>age</th>
<th>1 - 2</th>
<th>2 - 3</th>
<th>3 - 4</th>
<th>4 - 5</th>
<th>5 - 6</th>
<th>6 - 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.489</td>
<td>0.844</td>
<td>0.742</td>
<td>0.906</td>
<td>0.543</td>
<td>0.067</td>
</tr>
</tbody>
</table>

older age groups (6 - 7) is also in agreement with our data from the whole Jevany pond system where only minimum perches older than 8 year we founded (0.5 - 3 % from the whole sample studied - n = 2 500 fishes). The high value of the survival for age 1 - 2 (S = 0.489) can be influenced by the fact that one half of the pond was with submerged vegetation and so on the predation pressure of older perches was not so high.

Biomass and production

For the period 1981 - 1982 the following values were established - mean biomass $B = 140.6$ kg. ha$^{-1}$, total production $P = 55.7$ kg. ha$^{-1}$ and available production $P_a = 47.6$ kg. ha$^{-1}$, P_a (for the age 4 - 5$ \rightarrow$) $= 22.6$ kg. ha$^{-1}$. These data are the first data from pond in Czechoslovakia and indicate the production possibilities of similar small ponds in Czechoslovakia.
Our study is the first concerning about the biomass, production and survival on the perch population in a small pond in Czechoslovakia.

The calculated value of the production index \(P_t (2.5) \) was 211 g, very high, similar to values ascertained for example in the Slapy reservoir after its filling - 218 g (Frank, 1960) or in the Velký Tisy pond - 204 g (Švátora, 1974; 1989). Švátora (1989) reports \(P_t \) = 100 g for reservoirs and the general average value (reservoirs and ponds) - 129 g. In the case of the Žilský pond the growth was strongly affected by the abundance of the population stocked - at the time of catching in 1982 the fish population of age 2 - 7 was of 2,145 spec. ha\(^{-1}\) (in 1981 the corresponding abundance was 430 spec. ha\(^{-1}\) in spring 1981, before the new experiment). For a comparison it is possible to consider average values of the perch abundance from the Klčava and Záskalská reservoirs, which achieve values of 227 spec. ha\(^{-1}\) (Záskalská reservoir 1974 - 1979, range 100 - 416 spec. ha\(^{-1}\)), and 353 spec. ha\(^{-1}\) (Klčava reservoir 1963 - 1986, range 120 - 686 spec. ha\(^{-1}\)) (Švátora, 1989; Pivnička & Švátora, 1988) and corresponding values of production index \(P_t \) = 97 g (60 - 120) and 99 g (77 - 119), respectively. In these two localities, there was also negative correlation between the abundance of the population of the perch and the growth. A similar dependence was reported even more early by autors e.g. Bagenal (1977), Thorpe (1977), LeCren (1958), Craig (1987) and others. The abundance in 1981 corresponds to values known in our country from the Klčava reservoir (Pivnička, 1982), where, however, the perch growth was lower by one half at a similar abundance, however, in this reservoir there are also further fish species (total of 12), particularly the roach, and the total abundance of all the species of the corresponding age (2 - 8) ranges between 1,800 and 5,000 spec. ha\(^{-1}\) (in average of 3,000). By increasing the abundance of the perch population in the experimental pond by the factor of 5 to a value approximating the values from the Klčava (2,352 spec. ha\(^{-1}\) stocked in 1981) the growth was reduced in the first year (\(P_t \) = 118 g in 1982) to a level similar to data published from the Klčava reservoir (\(P_t \) = 97 g).

The survival is rather higher than values reported from this locality by Pivnička & Švátora (1983). These authors found that in seasons 1978/1979 and 1979/1980 survival achieved values 0.550 and 0.599 respectively (for age 2 - 8). All these values are in agreement with the older data available - for example Švátora (1989) reports \(S = 0.648 \) and \(S = 0.674 \) for the Záskalská and Klčava reservoir, respectively, McCormack (1965) \(S = 0.69 \) for the lake Windermere, Willemsen (1977) \(S = 0.42 \) for the lake IJssel (on the base of marking the fish). For the yellow perch (\textit{Perca flavescens}) Smith (1977) found \(S = 0.77 \) - 0.80, with the highest survival in the age 4 - 5 years \(S = 0.85 \), Schneider (1972) reports \(S = 0.51 \) - 0.63 for the age 2 - \(\infty \) and Nelson & Walburg (1977) found \(S = 0.46 \) for the whole population and 0.13 for the period between the 1st and the 2nd age group.

In the perch population in the Žilský pond the highest survival was also in the age 4 - 5 years \(S = 0.906 \), which value is similar to data reported by Smith (1977). In the age 1 - 2 we found higher values than those typically presented in the literature - \(S = 0.489 \). For the Záskalská reservoir Švátora (1989) found \(S = 0.19 \) for the age 1 - 2. A very low survival was found in the Žilský pond between the age 6 - 7 - \(S = 0.067 \); similar low values was also found for this age (6 - 7) by Švátora (1989) in the Záskalský reservoir - \(S = 0.179 \). These data correspond with the mean age of the perch in our reservoirs and ponds where fishes older than 8 - 9 years are rare, e.g. in the Klčava reservoir (Švátora 1974, Pivnička & Švátora, 1988) perches older than 8 year were 0.3 % only (n = 4,745 fishes).

Our data concerning the biomass and production of the perch population in the Žilský pond (\(B = 140.5 \) kg ha\(^{-1}\)) total production \(P_A = 47.5 \) kg ha\(^{-1}\), \(P_A \) (for age 4 - \(\infty \)) = 22.5 kg ha\(^{-1}\)) are very high with comparison to others from Czechoslovakia. For the Záskalská reservoir Švátora...
Fig. 1. Percentage age composition for the perch population in the Pilský pond in 1981 and 1982.

Fig. 2. Length-frequency histograms for the perch population stocked into the Pilský pond in 1981 and 1982.
(1989) reports values found in 1977 - $B = 15.9 \text{ kg.ha}^{-1}$, $P = 6.2 \text{ kg.ha}^{-1}$, $P_A (4 - \infty) = 44$ kg.ha^{-1} and Švátoňa (1972) for the Křižava reservoir (1963 - 1979) - $B = 145$ (8.1 - 20.8), $P = 6.8 (4.4 - 10.5)$, $P_A = 8.5 (3.6 - 16.9)$, $P_A (4 - \infty) = 1.9 (0.4 - 5.6)$; however, in the reservoir, there were also further species together with the perch, which formed a prevailing part of biomass of the given reservoirs. The biomass of the perch in lakes and reservoirs may be as high as 100 kg, exceptionally higher (e.g. Kipling & LeCren 1984) report the biomass of 43 to 116 kg.ha$^{-1}$ for the Windermere lake; Persson (1986) 73 and 173 kg.ha$^{-1}$ for the lake Söderborg and the roach biomass in this lake was of 264 and 155 kg.ha$^{-1}$, respectively). The amount of the biomass depends on whether the perch is present of the given locality only alone (so called perch lakes) or together with the other species (most typically with the roach) in the first case the biomass values mostly range between 18 and 40 kg.ha$^{-1}$, in the second case between 5 and 23 kg.ha$^{-1}$ (Rudenko, 1966, 1971; Sumari, 1971; Nyberg, 1979; Lind et al., 1974; Rask, 1984; Rask & Arvola, 1985; Lappalainen et al., 1988) except for data by Persson (1986). The production is mostly between 4 and 12 kg.ha$^{-1}$. Lind et al. (1974) found a production of 99 kg.ha$^{-1}$ in the lake Kiotajärvi, Nyberg (1979) 7.5 and 11.2 kg.ha$^{-1}$ in lakes Vitalampak and Botjärn and Carlander (1977) reports the production value of 21.9 kg.ha$^{-1}$ for the yellow perch (Perca flavescens). With respect to the values mentioned, our data are higher, which is however, due to the fact that the perch was the only species in the given pond.

The data about the perch biomass and production ascertained here are the highest values for our territory and they are even higher than most data from localities outside of Czechoslovakia.

SUMMARY

The growth, biomass, production and survival of an artificially stocked population of the perch in a small pond (Pilsy - 0.33 ha) were studied between 1981 and 1982. The weight growth was evaluated with the help of the production index P_l and it was affected by the abundance of the fish stocked (very rapid in 1980 - 1981 - $N = 430$ specie.ha$^{-1}$ (spring 1981, age 2-7), $P_l(2-6) = 211$ g; average in 1981 - 1982 - $N = 2.145$ specie.ha$^{-1}$ (spring 1982, age 2-7), $P_l(2-4) = 118$ g). The value of the annual survival $S = 0.700$ for the whole perch population was calculated. This value ranges between values ascertained for the perch populations in our country. Maximal survival values are achieved by the fish of the age 2-5 (from 0.742 to 0.906), and survival strongly decreases for the age 6-7 (0.067). The ascertained production and biomass values - total production $P = 56.7$ kg.ha$^{-1}$, available production $P_A = 46.6$ kg.ha$^{-1}$, mean biomass $B = 140.5$ kg.ha$^{-1}$ are the highest values out of all the data available for the perch from Czechoslovakia.

Acknowledgement

We are indebted to the Director of the School Forestry Establishment VŠZ in Kostelec nad Černými lesy, the late Ing. S. Machytko and Director Ing. M. Helič for lending us the experimental pond. Our thanks are extended to the head of the fishery department Mr. J. Čejkovský and for providing field works to Doc. Ing. J. Kádali, CSc. for the Department of Biological Principles of the Animal Production of the Agricultural University in Prague for Dr. O. Žabko, CSc., Doc. Dr. K. Pivnička, DrSc., Dr. J. Žáček, CSc., and Dr. J. Kubeška, CSc. also helped us in field works. We are obliged to Prof. Dr. O. Žabko, CSc. for critical comments to the manuscript.

REFERENCES

74

MILLS CH A. & M.A. HURLEY 1990: Long-term studies on the Windermere populations of perch (Perca fluvatilis), pike (Esox lucius) and Arctic char (Salvelinus alpinus). Freshwater Biology 23: 119 - 126.

PIVNIČKA K. & M. ŠVÁTA: Factor affecting the shift in the predominance from Eurasian perch (Perca fluvatilis) to roach (Rutilus rutilus) in the Kličava reservoir, Czechoslovakia. J. Fish Res. Board Can. 34: 1571 - 1575.

RASK M. & L. ARVOLA 1985 The biomass and production of pike, perch and whitefish in two small lakes in

Short note

Occurrence of *Aethus flavicornis* (Heteroptera: Cydnidae) in former Czechoslovakia

Jitka DAVIDOVÁ-VILIMOVÁ

Department of Zoology, Charles University, Vinohrady 7, CZ - 128 44 Praha 2, Czech Republic

Received December 15, 1992, accepted February 18, 1993
Published June 25, 1993

Distribution, diagnostic characters, bioamy, sand dune biotop

Abstract. Psammophilous species *Aethus flavicornis* (Heteroptera: Cydnidae) was reported from several localities in Moravia and Bohemia, and from one locality in Slovakia during the 19th and 20th centuries. This species is recently known only from one locality in Bohemia.

Hoberlandt (1977), in check list of Czechoslovak Heteroptera, listed psammophilous cydnid *Aethus flavicornis* (Fabricius, 1794) from Bohemia, Moravia, and Slovakia. The same author (Hoberlandt, 1959) previously mentioned infrequent occurrence of this species on sandy localities in Czechoslovakia. *A. flavicornis* is, however, known in reality from probably only one locality in Bohemia at the present time.

A. flavicornis was found only near Bratislava (7868) (Sábranský, 1891) in Slovakia last century (see map in fig. 1). More localities of *A. flavicornis* existed in Moravia (Stehlík, 1983): Mutěnice (7168), Nebovidy (6865), Brno - Ostopovice (6865), Brno - Kamenný vrch (6865), Cejč (7067). All data about occurrence of *A. flavicornis* in Moravia have originated from a period before the year 1958. This species has not been again collected in Slovakia nor in Moravia during last years (Stehlík, 1983; Stehlík & Vavůnová, 1993).

A. flavicornis was mentioned by Duda (1885) from several localities in Bohemia: vicinity of Prague (5852,5853,5952,5953), near Rožná (5557), Tábor (6554), Sobššlav (6754), and Cheb (5940). The last records about the occurrence of *A. flavicornis* in Bohemia are from the year 1963. Štys (1963) listed *A. flavicornis* in list of Czechoslovak Pentatomoida (locality omitted). Štys (personal communication, unpublished data) collected this species on sand dunes near Veselí nad Lužnicí (6854) (11.4.1963, Southern Bohemia) and closely Kožlí (5753) near Neratovice (10.4.1963, Central Bohemia). Both localities mentioned are already several years entirely destroyed.

Hüeber (1891) briefly summarized a distribution of *A. flavicornis*. This species occurred in Central and Southern Europe; Duda's (1885) paper had been quoted as a source of information about a distribution of *A. flavicornis* in Bohemia.

A new locality, on which *A. flavicornis* occurs, has been discovered during complete investigation of sandy localities in Bohemia. *A. flavicornis* was found in high density of specimens on a remainder of sand dune near the river Labe during last years. This dune lies on the periphery of the village Tuhař (5653) (near Neratovice, Central Bohemia). It is strongly influenced by human activities which, however, do not collide with a presence of typical psammophilous flora and fauna.
Fig. 1 - findings of Aethus flavicornis, • - before the year 1992, x - between the years 1920-1960, * - after the year 1960, ■ - in the present time.

A. flavicornis occurs either under fragments, remainders of boards, litter, etc., or more frequently under tufts of psammatophilous grass Corynephorus canescens (L.) P. Beauv. Michál (1938) and Eckler (1962) mentioned the same plant [as its junior synonym Weingartia canescens (L.)] in relation with A. flavicornis. The former author described a copulation of A. flavicornis under tufts of Oenothera biennis L.

Both adults and nymphs move in detritus or on sand; they immediately quickly burrow deeply to a sand after disturbance. Stelik (1983) and Wagner (1966) provided detailed description of a way of the life of A. flavicornis. An occurrence of adults of A. flavicornis during yr seasons was mentioned by several authors, e.g., Michalk (1938); and Burghardt & Rieger (1978).

A. flavicornis was collected several times during the year 1989 (2.2.; 1.6.; 7.9.), together with closely related species Aethus nigrita (Fabricius, 1794). The described locality was strongly damaged throughout activities on the periphery of the village during spring 1990. A. flavicornis survived probably in very low population density during the years 1990 and 1991. It tu

Figs 2, 3 - head, dorsal view; 1 - Aethus flavicornis, 2 - Aethus nigrita; a - antennae. Scale: 0.5 mm for both figs.
appeared again in conspicuously high density in the year 1992 (15.5.; 15.8.; 12.9.); adults were collected during the whole year, nymphs in summer. *A. nigrinus* has not been found at all this year.

Two very similar species - *A. flavicornis* and *A. nigrinus* can be distinguished after the following characters (Hoberlandt, 1959; Wagner, 1966):

- **A. flavicornis**
 - size 2.5 - 3.7 mm;
 - apex of antennae with two long, fine hairs (Fig. 2);
 - venter of abdomen with sparse, long hairs.

- **A. nigrinus**
 - size 4.0 - 5.0 mm;
 - apex of antennae with two short, thick setae (Fig. 3);
 - venter of abdomen without long hairs.

The small remainder of sand dune near Tubaň is very probably the last locality with population of *A. flavicornis*. This typical psammophilous species of bug has quickly vanished in our country, just as all representatives of psammophilous entomofauna, because of drastic destruction of sandy places.

Acknowledgements

I thank Dr. P. Štya (Prague) for unpublished data about occurrence of *A. flavicornis*, and Dr. J. L. Stenhlik (Brno) for general information about studied problem, for providing literary data, and for critical comments on manuscript.

REFERENCES

INSTRUCTION TO AUTHORS

Acta Societatis Zoologicae Bohemicae published in English, original papers on general, applied and systematic zoology, biographies and book reviews. Papers by members of the Czech Zoological Society are preferred. It is understood that manuscripts submitted are not offered to any other journal for prior or simultaneous publication.

Authors of taxonomic papers must respect the articles of the International Code of Zoological Nomenclature (Third Edition, 1985) and to observe its recommendations. The manuscript, including footnotes, references and tables, must be typed with double spacing (30 lines per page) on side A4 paper (210 mm x 297 mm), in duplicate, and should be not longer than 30 pages. Pages must be numbered throughout the manuscript. Final version (corrected as requested by referees and language reviewer) is preferably accepted on an IBM PC-compatible 5.25" or 3.5" diskette.

Heading: Title of the paper, full name(s) of author(s), place of work with full address - each on separate line.

Key words: Select a set (one or two lines) of key words (index terms). The set should be complete (i.e. words from the title should be repeated if considered index terms).

Abstract summarising concisely the contents of the paper and indicating the relevance of the work, should not exceed 20 type-written lines.

References: within the text - Dryden (1968), (Lattin 1967), Kumari & Nair (1967), Tamio et al. (1970), the full citation should be given in the list of references. Under the References authors should be cited in full followed by abbreviations of periodicals in accordance with The World List of Scientific Periodicals, 4th edition, Butterworths, London (1964-1965). The number is to be given (in parentheses) only when individual numbers are paginated independently (see example b). References to papers published in languages other than the major ones, or printed in characters other than Latin, should contain English translation, with an appropriate note at the end (see example e, f).

Examples:

Illustrations and their caption or legends must form a separate unit. Clear technically perfect line drawing and photographs (black-and-white, glossy) are accepted. The original drawing and photographs (one set) should not be more than twice as large as when printed and preferably into blocks or plates so that the blocks of drawings or photographs may be uniformly reproduced over the page with the journal. Legends to the illustrations should be supplied on a separate sheet of paper. References to illustrations and tables in the text: Fig. 1, Figs 1-2, Plate 1, Fig. 1 (for photographic plates): Table 1.

Tables including headings and explanations should be on separate sheets of paper, numbered consequently with Arabic numerals.

Marking in the manuscript (in light pencil, not in ink or type written). In the text: Latin names of taxa up to generic level - with wavy underlining (italics). In the References: names of periodicals (not the Latin names of taxa) with wavy underlining.

Proofs will be sent to the authors. One hundred reprints are supplied free of charge. Manuscripts of published papers and originals of illustrations are not returned unless return requested.

Address of the editorial office: Acta Soc. Zool. Bohem., Dr David Král, Vinohrady 7, CZ-128 00 Praha 2, Czech Republic